Investigation of surface and interface effects of piezoelectric quasicrystal different models with propagation of shear horizontal and anti-plane shear horizontal wave

IF 3.8 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Seema  (, ), Abhinav Singhal  (, )
{"title":"Investigation of surface and interface effects of piezoelectric quasicrystal different models with propagation of shear horizontal and anti-plane shear horizontal wave","authors":"Seema \n (,&nbsp;),&nbsp;Abhinav Singhal \n (,&nbsp;)","doi":"10.1007/s10409-024-24389-x","DOIUrl":null,"url":null,"abstract":"<div><p>Based on the theoretical representation of piezoelectric quasicrystal, a generalized dynamic model is built to represent the transmission of wave aspects in surface acoustic pulse nano-devices. Surface elasticity, surface piezoelectricity, and surface permittivity help to include the surface effect, which equals additional thin sheets. It is shown that, under certain assumptions, this generalized dynamic model may be simplified to a few classical examples that are appropriate for both macro and nano-scale applications. In the current work, surface piezoelectricity is used to develop a theoretical model for shear horizontal (SH) waves where it contains the surface piezoelectricity theory and a linear spring model to quantitatively and qualitatively explore SH waves in an orthotropic piezoelectric quasicrystal layer overlying an elastic framework (Model I), a piezoelectric quasi-crystal nano substrate, and an orthotropic piezoelectric quasicrystal half-space (Model II). The theoretical model stimulates the numerical results, which establish the critical thickness. As the piezoelectric layer’s thickness gets closer to nanometres, surface energy must be included when analyzing dispersion properties. Furthermore, the effects of surface elasticity and density on wave velocity are investigated individually. The authors establish a parameter, precisely the ratio of the physical modulus along the width direction to along the direction of wave travel. The surface effect’s impact on the general characteristics of piezoelectric structures is seen as a spring force acting on bulk boundaries. Analytical presentation of frequency equations for both symmetric and anti-symmetric waves pertains to the case of an electrical short circuit in Model II. The project aims to analyze SH waves in orthogonal anisotropic, transversely isotropic piezoelectric layered nanostructures, providing a practical mathematical tool for surface effects analysis and adaptability to other wave types, including Rayleigh waves and acoustic surface waves.</p></div>","PeriodicalId":7109,"journal":{"name":"Acta Mechanica Sinica","volume":"41 11","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10409-024-24389-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Based on the theoretical representation of piezoelectric quasicrystal, a generalized dynamic model is built to represent the transmission of wave aspects in surface acoustic pulse nano-devices. Surface elasticity, surface piezoelectricity, and surface permittivity help to include the surface effect, which equals additional thin sheets. It is shown that, under certain assumptions, this generalized dynamic model may be simplified to a few classical examples that are appropriate for both macro and nano-scale applications. In the current work, surface piezoelectricity is used to develop a theoretical model for shear horizontal (SH) waves where it contains the surface piezoelectricity theory and a linear spring model to quantitatively and qualitatively explore SH waves in an orthotropic piezoelectric quasicrystal layer overlying an elastic framework (Model I), a piezoelectric quasi-crystal nano substrate, and an orthotropic piezoelectric quasicrystal half-space (Model II). The theoretical model stimulates the numerical results, which establish the critical thickness. As the piezoelectric layer’s thickness gets closer to nanometres, surface energy must be included when analyzing dispersion properties. Furthermore, the effects of surface elasticity and density on wave velocity are investigated individually. The authors establish a parameter, precisely the ratio of the physical modulus along the width direction to along the direction of wave travel. The surface effect’s impact on the general characteristics of piezoelectric structures is seen as a spring force acting on bulk boundaries. Analytical presentation of frequency equations for both symmetric and anti-symmetric waves pertains to the case of an electrical short circuit in Model II. The project aims to analyze SH waves in orthogonal anisotropic, transversely isotropic piezoelectric layered nanostructures, providing a practical mathematical tool for surface effects analysis and adaptability to other wave types, including Rayleigh waves and acoustic surface waves.

剪切水平波和反平面剪切水平波传播下不同模型压电准晶体的表面和界面效应研究
基于压电准晶体的理论表征,建立了表面声脉冲纳米器件中波向传输的广义动力学模型。表面弹性、表面压电性和表面介电常数有助于包括表面效应,这相当于额外的薄片。结果表明,在一定的假设条件下,该广义动力学模型可以简化为几个经典例子,既适合宏观应用,也适合纳米应用。在目前的工作中,表面压电被用于建立剪切水平(SH)波的理论模型,其中包含表面压电理论和线性弹簧模型,以定量和定性地探索弹性框架(模型一)上的正交异性压电准晶体层中的SH波,压电准晶体纳米衬底,和正交各向异性压电准晶体半空间(模型II)。理论模型对数值结果进行了模拟,建立了临界厚度。随着压电层的厚度越来越接近纳米,在分析色散特性时必须考虑表面能。此外,还分别研究了表面弹性和密度对波速的影响。作者建立了一个参数,即沿宽度方向的物理模量与沿波传播方向的物理模量之比。表面效应对压电结构一般特性的影响被看作是作用在体边界上的弹簧力。对称波和反对称波的频率方程的解析表示适用于模型II中电路短路的情况。本项目旨在分析正交各向异性、横向各向同性压电层状纳米结构中的SH波,为表面效应分析和对其他波类型(包括瑞利波和声表面波)的适应性提供实用的数学工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Mechanica Sinica
Acta Mechanica Sinica 物理-工程:机械
CiteScore
5.60
自引率
20.00%
发文量
1807
审稿时长
4 months
期刊介绍: Acta Mechanica Sinica, sponsored by the Chinese Society of Theoretical and Applied Mechanics, promotes scientific exchanges and collaboration among Chinese scientists in China and abroad. It features high quality, original papers in all aspects of mechanics and mechanical sciences. Not only does the journal explore the classical subdivisions of theoretical and applied mechanics such as solid and fluid mechanics, it also explores recently emerging areas such as biomechanics and nanomechanics. In addition, the journal investigates analytical, computational, and experimental progresses in all areas of mechanics. Lastly, it encourages research in interdisciplinary subjects, serving as a bridge between mechanics and other branches of engineering and the sciences. In addition to research papers, Acta Mechanica Sinica publishes reviews, notes, experimental techniques, scientific events, and other special topics of interest. Related subjects » Classical Continuum Physics - Computational Intelligence and Complexity - Mechanics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信