Achieving high-performance parameters in NASICON-polymer composite electrolyte-based solid-state supercapacitors by interface modification†

IF 4.6 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
RSC Advances Pub Date : 2025-02-27 DOI:10.1039/D4RA08292C
Neha and Anshuman Dalvi
{"title":"Achieving high-performance parameters in NASICON-polymer composite electrolyte-based solid-state supercapacitors by interface modification†","authors":"Neha and Anshuman Dalvi","doi":"10.1039/D4RA08292C","DOIUrl":null,"url":null,"abstract":"<p >The present study reveals a strategy to enhance the performance of solid-state supercapacitors based on activated carbon electrodes and a Na<small><sub>3</sub></small>Zr<small><sub>2</sub></small>Si<small><sub>2</sub></small>PO<small><sub>12</sub></small> (NZSP) dispersed fast ionic solid polymer electrolyte membrane. The electrode–electrolyte interface is optimized using a novel ‘solvent layer’ approach to enhance supercapacitor performance. By adding a small amount of acetonitrile organic solvent (a few μL cm<small><sup>−2</sup></small>) at the electrode–electrolyte interface and utilizing high surface area (1800 m<small><sup>2</sup></small> g<small><sup>−1</sup></small>) activated carbon, significant improvements in specific capacitance, specific energy, specific power, and cycling stability are achieved. Device performance at various operating voltages and discharge currents reveals interesting results. A specific capacitance of approximately 260 F g<small><sup>−1</sup></small> and a high specific power of 4780 W kg<small><sup>−1</sup></small> is achieved at 3 V/5 mA. Moreover, after 10 000 galvanostatic charge–discharge cycles (1 V/1 mA), the supercapacitor exhibits ∼99% stable coulombic efficiency along with appreciably high capacitance retention (∼90%). A stack of five such cells can power an 8 V LED circuit for more than 30 minutes. Applying such a solvent layer enables effective use of the surface area of the activated carbon. Results suggest that solvent incorporation enables a local ‘gel-like’ layer formation that couples the electrode with a solid polymer electrolyte and facilitates faster charge movement across the electrode–electrolyte interface.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 9","pages":" 6518-6530"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d4ra08292c?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d4ra08292c","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The present study reveals a strategy to enhance the performance of solid-state supercapacitors based on activated carbon electrodes and a Na3Zr2Si2PO12 (NZSP) dispersed fast ionic solid polymer electrolyte membrane. The electrode–electrolyte interface is optimized using a novel ‘solvent layer’ approach to enhance supercapacitor performance. By adding a small amount of acetonitrile organic solvent (a few μL cm−2) at the electrode–electrolyte interface and utilizing high surface area (1800 m2 g−1) activated carbon, significant improvements in specific capacitance, specific energy, specific power, and cycling stability are achieved. Device performance at various operating voltages and discharge currents reveals interesting results. A specific capacitance of approximately 260 F g−1 and a high specific power of 4780 W kg−1 is achieved at 3 V/5 mA. Moreover, after 10 000 galvanostatic charge–discharge cycles (1 V/1 mA), the supercapacitor exhibits ∼99% stable coulombic efficiency along with appreciably high capacitance retention (∼90%). A stack of five such cells can power an 8 V LED circuit for more than 30 minutes. Applying such a solvent layer enables effective use of the surface area of the activated carbon. Results suggest that solvent incorporation enables a local ‘gel-like’ layer formation that couples the electrode with a solid polymer electrolyte and facilitates faster charge movement across the electrode–electrolyte interface.

Abstract Image

通过界面改性实现nasicon -聚合物复合电解质基固态超级电容器的高性能参数
本研究揭示了一种基于活性炭电极和Na3Zr2Si2PO12 (NZSP)分散快速离子固体聚合物电解质膜的固态超级电容器性能提升策略。电极-电解质界面使用一种新的“溶剂层”方法进行优化,以提高超级电容器的性能。通过在电极-电解质界面添加少量乙腈有机溶剂(几μL cm−2)和使用高比表面积(1800 m2 g−1)的活性炭,可以显著提高比电容、比能量、比功率和循环稳定性。器件在不同工作电压和放电电流下的性能揭示了有趣的结果。在3v / 5ma时,可实现约260 F g−1的比电容和4780 W kg−1的高比功率。此外,在1万次恒流充放电循环(1 V/1 mA)后,超级电容器表现出~ 99%的稳定库仑效率以及相当高的电容保持率(~ 90%)。5个这样的电池可以为一个8v的LED电路供电超过30分钟。应用这样的溶剂层可以有效地利用活性炭的表面积。结果表明,溶剂的掺入使局部“凝胶状”层形成,使电极与固体聚合物电解质耦合,并促进电荷在电极-电解质界面上更快地移动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
RSC Advances
RSC Advances chemical sciences-
CiteScore
7.50
自引率
2.60%
发文量
3116
审稿时长
1.6 months
期刊介绍: An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信