Haochen Zhang;Xinyuan Qiao;Jing Tian;Suwen Song;Zhongfeng Wang
{"title":"Fast Hardware Architecture With Efficient Matrix Computations for the Key Generation of Classic McEliece","authors":"Haochen Zhang;Xinyuan Qiao;Jing Tian;Suwen Song;Zhongfeng Wang","doi":"10.1109/TCSI.2025.3528119","DOIUrl":null,"url":null,"abstract":"Classic McEliece, with a remarkably stable security level, has been selected as one of the four key-establishment algorithms in the fourth-round evaluation of the post-quantum cryptography (PQC) standardization process of national institute of standards and technology (NIST). However, its memory-intensive and time-consuming key generation poses an obstacle to widespread use. In this paper, we propose a fast hardware implementation of the key generation incorporating several architectural optimizations. For the Gaussian elimination, we optimize the scheduling of computing resources and the memory access process and present a high-performance and flexible systemizer with multiple low fan-out systolic arrays. Besides, an algorithmic-level parallelized design for entry generation and Gaussian elimination is proposed to reduce the redundant computation time. A compact entry generator with a multi-level feedback mechanism and a 2-D high-speed FFT module facilitates continuous streaming the generated entries into the systemizer.FPGA implementation results show that our designs for the key generation improve time-area efficiency by 11.9% to 43.2% compared to the state-of-the-arts. Moreover, compared to the hardware implementations for the key generation of the other two quasi-cyclic code-based PQC algorithms, ours for Classic McEliece based on the random code achieves close to or better results in several metrics.","PeriodicalId":13039,"journal":{"name":"IEEE Transactions on Circuits and Systems I: Regular Papers","volume":"72 3","pages":"1321-1331"},"PeriodicalIF":5.2000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems I: Regular Papers","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10847301/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Classic McEliece, with a remarkably stable security level, has been selected as one of the four key-establishment algorithms in the fourth-round evaluation of the post-quantum cryptography (PQC) standardization process of national institute of standards and technology (NIST). However, its memory-intensive and time-consuming key generation poses an obstacle to widespread use. In this paper, we propose a fast hardware implementation of the key generation incorporating several architectural optimizations. For the Gaussian elimination, we optimize the scheduling of computing resources and the memory access process and present a high-performance and flexible systemizer with multiple low fan-out systolic arrays. Besides, an algorithmic-level parallelized design for entry generation and Gaussian elimination is proposed to reduce the redundant computation time. A compact entry generator with a multi-level feedback mechanism and a 2-D high-speed FFT module facilitates continuous streaming the generated entries into the systemizer.FPGA implementation results show that our designs for the key generation improve time-area efficiency by 11.9% to 43.2% compared to the state-of-the-arts. Moreover, compared to the hardware implementations for the key generation of the other two quasi-cyclic code-based PQC algorithms, ours for Classic McEliece based on the random code achieves close to or better results in several metrics.
期刊介绍:
TCAS I publishes regular papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes: - Circuits: Analog, Digital and Mixed Signal Circuits and Systems - Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic - Circuits and Systems, Power Electronics and Systems - Software for Analog-and-Logic Circuits and Systems - Control aspects of Circuits and Systems.