Polynomial Formal Verification of Multi-Valued Approximate Circuits Within Constant Cutwidth

IF 5.2 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Mohamed Nadeem;Chandan Kumar Jha;Rolf Drechsler
{"title":"Polynomial Formal Verification of Multi-Valued Approximate Circuits Within Constant Cutwidth","authors":"Mohamed Nadeem;Chandan Kumar Jha;Rolf Drechsler","doi":"10.1109/TCSI.2025.3531008","DOIUrl":null,"url":null,"abstract":"Ensuring functional correctness is achieved through formal verification. As circuit complexity increases, limiting the upper bounds for time and space required for verification becomes crucial. Polynomial Formal Verification (PFV) has been introduced to tackle this problem. In modern digital system designs, approximate circuits are widely employed in error resilient applications. Therefore, ensuring the functional correctness of these circuits becomes essential. In prior works, it has been proven that approximate circuits with constant cutwidth can be verified in linear time. However, extending binary logic verification to Multi-Valued Logic (MVL) introduces challenges, particularly regarding the encoding of MVL operators. It has been shown that MVL circuits with constant cutwidth can be verified in linear time using Answer Set Programming (ASP), due to the ASP encoding capabilities of MVL operators. In this paper, we present a PFV approach of MVL approximate circuits with constant cutwidth using ASP. We then demonstrate that the verification of MVL approximate circuits with constant cutwidth can be achieved in linear time. Finally, we evaluate various MVL approximate circuits with constant cutwidth across different logic levels to show the efficacy of our approach.","PeriodicalId":13039,"journal":{"name":"IEEE Transactions on Circuits and Systems I: Regular Papers","volume":"72 3","pages":"1411-1424"},"PeriodicalIF":5.2000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems I: Regular Papers","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10858422/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Ensuring functional correctness is achieved through formal verification. As circuit complexity increases, limiting the upper bounds for time and space required for verification becomes crucial. Polynomial Formal Verification (PFV) has been introduced to tackle this problem. In modern digital system designs, approximate circuits are widely employed in error resilient applications. Therefore, ensuring the functional correctness of these circuits becomes essential. In prior works, it has been proven that approximate circuits with constant cutwidth can be verified in linear time. However, extending binary logic verification to Multi-Valued Logic (MVL) introduces challenges, particularly regarding the encoding of MVL operators. It has been shown that MVL circuits with constant cutwidth can be verified in linear time using Answer Set Programming (ASP), due to the ASP encoding capabilities of MVL operators. In this paper, we present a PFV approach of MVL approximate circuits with constant cutwidth using ASP. We then demonstrate that the verification of MVL approximate circuits with constant cutwidth can be achieved in linear time. Finally, we evaluate various MVL approximate circuits with constant cutwidth across different logic levels to show the efficacy of our approach.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Circuits and Systems I: Regular Papers
IEEE Transactions on Circuits and Systems I: Regular Papers 工程技术-工程:电子与电气
CiteScore
9.80
自引率
11.80%
发文量
441
审稿时长
2 months
期刊介绍: TCAS I publishes regular papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes: - Circuits: Analog, Digital and Mixed Signal Circuits and Systems - Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic - Circuits and Systems, Power Electronics and Systems - Software for Analog-and-Logic Circuits and Systems - Control aspects of Circuits and Systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信