A Graph-Based Accelerator of Retinex Model With Bit-Serial Computing for Image Enhancements

IF 5.2 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Zhengzhe Wei;Junjie Mu;Yuanjin Zheng;Tony Tae-Hyoung Kim;Bongjin Kim
{"title":"A Graph-Based Accelerator of Retinex Model With Bit-Serial Computing for Image Enhancements","authors":"Zhengzhe Wei;Junjie Mu;Yuanjin Zheng;Tony Tae-Hyoung Kim;Bongjin Kim","doi":"10.1109/TCSI.2025.3525653","DOIUrl":null,"url":null,"abstract":"This work proposes the Poisson equation formulation of the Retinex model for image enhancements using a low-power graph hardware accelerator performing finite difference updates on a lattice graph processing element (PE) array. By encapsulating the underlying algorithm in a graph hardware structure, a highly localized dataflow that takes advantage of the physical placement of the PEs is enabled to minimize data movement and maximize data reuse. The on-chip dataflow that achieves data sharing, and reuse among neighboring PEs during massively parallel updates is generated in each PE driven by two external control signals. Using a custom accumulator design intended for bit-serial computing, this work enables precision on demand and extensive on-chip data reuse with minimal area overhead, accommodating a non-overlap image mapping scheme in which a <inline-formula> <tex-math>$20\\times 20$ </tex-math></inline-formula> image tile can be processed without external memory access at a time. With increasing user-configurable update count, image noise and shadow can be progressively removed with the inevitable loss of image details. Fabricated using a 65nm technology, the test chip occupies 0.2955mm2 core area and consumes 2.191mW operating at 1V, 25.6MHz, and a reconfigurable 10- or 14-bit precision.","PeriodicalId":13039,"journal":{"name":"IEEE Transactions on Circuits and Systems I: Regular Papers","volume":"72 3","pages":"1346-1357"},"PeriodicalIF":5.2000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems I: Regular Papers","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10857689/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This work proposes the Poisson equation formulation of the Retinex model for image enhancements using a low-power graph hardware accelerator performing finite difference updates on a lattice graph processing element (PE) array. By encapsulating the underlying algorithm in a graph hardware structure, a highly localized dataflow that takes advantage of the physical placement of the PEs is enabled to minimize data movement and maximize data reuse. The on-chip dataflow that achieves data sharing, and reuse among neighboring PEs during massively parallel updates is generated in each PE driven by two external control signals. Using a custom accumulator design intended for bit-serial computing, this work enables precision on demand and extensive on-chip data reuse with minimal area overhead, accommodating a non-overlap image mapping scheme in which a $20\times 20$ image tile can be processed without external memory access at a time. With increasing user-configurable update count, image noise and shadow can be progressively removed with the inevitable loss of image details. Fabricated using a 65nm technology, the test chip occupies 0.2955mm2 core area and consumes 2.191mW operating at 1V, 25.6MHz, and a reconfigurable 10- or 14-bit precision.
基于图的Retinex模型加速器与位串行计算图像增强
这项工作提出了Retinex模型的泊松方程公式,该模型使用低功耗图形硬件加速器在晶格图形处理元素(PE)阵列上执行有限差分更新来进行图像增强。通过将底层算法封装在图形硬件结构中,高度本地化的数据流(利用pe的物理位置)能够最大限度地减少数据移动并最大化数据重用。在两个外部控制信号的驱动下,在每个PE中产生芯片上的数据流,在大规模并行更新过程中实现相邻PE之间的数据共享和重用。使用用于位串行计算的定制累加器设计,这项工作以最小的面积开销实现了按需精度和广泛的片上数据重用,适应非重叠图像映射方案,该方案可以在没有外部存储器访问的情况下一次处理$20 × 20$图像块。随着用户可配置更新计数的增加,图像噪声和阴影可以逐步去除,但不可避免地会丢失图像细节。该测试芯片采用65nm工艺制造,核心面积为0.2955mm2,功耗为2.191mW,工作电压为1V,频率为25.6MHz,精度为10位或14位,可重新配置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Circuits and Systems I: Regular Papers
IEEE Transactions on Circuits and Systems I: Regular Papers 工程技术-工程:电子与电气
CiteScore
9.80
自引率
11.80%
发文量
441
审稿时长
2 months
期刊介绍: TCAS I publishes regular papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes: - Circuits: Analog, Digital and Mixed Signal Circuits and Systems - Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic - Circuits and Systems, Power Electronics and Systems - Software for Analog-and-Logic Circuits and Systems - Control aspects of Circuits and Systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信