FREYA: A 0.023-mm²/Channel, 20.8- μW/Channel, Event-Driven 8-Channel SoC for Spiking End-to-End Sensing of Time-Sparse Biosignals

IF 5.2 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Jonah Van Assche;Charlotte Frenkel;Ali Safa;Georges Gielen
{"title":"FREYA: A 0.023-mm²/Channel, 20.8- μW/Channel, Event-Driven 8-Channel SoC for Spiking End-to-End Sensing of Time-Sparse Biosignals","authors":"Jonah Van Assche;Charlotte Frenkel;Ali Safa;Georges Gielen","doi":"10.1109/TCSI.2024.3504264","DOIUrl":null,"url":null,"abstract":"Biomedical systems-on-chip (SoCs) for real-time monitoring of vital signs need to read out multiple recording channels in parallel and process them locally with low latency, at a low per-channel area and power consumption. To achieve this, event-driven SoCs that exploit the time-sparse nature of biosignals such as the electrocardiogram (ECG) have been proposed; they only process the signal when it shows activity. Such SoCs convert time-sparse biosignals into spike trains, on which spiking neural networks (SNNs) can perform event-driven signal classification. State-of-the-art event-driven SoCs, however, still suffer from poor area and power efficiency and use inflexible, hard-coded spike-encoding schemes. To improve on these challenges, this paper presents FREYA, an 8-channel event-driven SoC for end-to-end sensing of time-sparse biosignals. The proposed SoC consists of the following key contributions: 1) an 8-channel time-division-multiplexed level-crossing sampling (LCS) analog-to-spike converter (ASC) that encodes analog input signals into input spikes for an on-chip SNN; 2) an ASC spike-encoding algorithm that is fully programmable in resolution (4 to 8 bits) and conversion algorithm (offset and decay parameters); 3) an on-chip integrated, flexible SNN processor based on a programmable crossbar architecture, that allows for efficient event-driven processing, and that can be reconfigured towards multiple sensing applications; 4) a custom offline end-to-end training framework for the fast retraining of the spike-encoding algorithm and SNN architecture towards new applications or patient-dependent signal variations. A prototype IC has been fabricated in a 40nm CMOS technology. It has a per-channel active area of 0.023 mm2 (0.184 mm2 in total), a <inline-formula> <tex-math>$7\\times $ </tex-math></inline-formula> improvement over the state of the art. For the use case of ECG-based QRS-labeling, a detection accuracy of 98.67% is achieved, while the system consumes <inline-formula> <tex-math>$20.8~\\mu $ </tex-math></inline-formula>W per channel and achieves a latency of only 80 ms, thus paving the way for multi-channel, high-fidelity, event-driven SoCs in biomedical applications.","PeriodicalId":13039,"journal":{"name":"IEEE Transactions on Circuits and Systems I: Regular Papers","volume":"72 3","pages":"1093-1104"},"PeriodicalIF":5.2000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems I: Regular Papers","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10771590/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Biomedical systems-on-chip (SoCs) for real-time monitoring of vital signs need to read out multiple recording channels in parallel and process them locally with low latency, at a low per-channel area and power consumption. To achieve this, event-driven SoCs that exploit the time-sparse nature of biosignals such as the electrocardiogram (ECG) have been proposed; they only process the signal when it shows activity. Such SoCs convert time-sparse biosignals into spike trains, on which spiking neural networks (SNNs) can perform event-driven signal classification. State-of-the-art event-driven SoCs, however, still suffer from poor area and power efficiency and use inflexible, hard-coded spike-encoding schemes. To improve on these challenges, this paper presents FREYA, an 8-channel event-driven SoC for end-to-end sensing of time-sparse biosignals. The proposed SoC consists of the following key contributions: 1) an 8-channel time-division-multiplexed level-crossing sampling (LCS) analog-to-spike converter (ASC) that encodes analog input signals into input spikes for an on-chip SNN; 2) an ASC spike-encoding algorithm that is fully programmable in resolution (4 to 8 bits) and conversion algorithm (offset and decay parameters); 3) an on-chip integrated, flexible SNN processor based on a programmable crossbar architecture, that allows for efficient event-driven processing, and that can be reconfigured towards multiple sensing applications; 4) a custom offline end-to-end training framework for the fast retraining of the spike-encoding algorithm and SNN architecture towards new applications or patient-dependent signal variations. A prototype IC has been fabricated in a 40nm CMOS technology. It has a per-channel active area of 0.023 mm2 (0.184 mm2 in total), a $7\times $ improvement over the state of the art. For the use case of ECG-based QRS-labeling, a detection accuracy of 98.67% is achieved, while the system consumes $20.8~\mu $ W per channel and achieves a latency of only 80 ms, thus paving the way for multi-channel, high-fidelity, event-driven SoCs in biomedical applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Circuits and Systems I: Regular Papers
IEEE Transactions on Circuits and Systems I: Regular Papers 工程技术-工程:电子与电气
CiteScore
9.80
自引率
11.80%
发文量
441
审稿时长
2 months
期刊介绍: TCAS I publishes regular papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes: - Circuits: Analog, Digital and Mixed Signal Circuits and Systems - Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic - Circuits and Systems, Power Electronics and Systems - Software for Analog-and-Logic Circuits and Systems - Control aspects of Circuits and Systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信