Léopold Van Brandt;Michele Bonnin;Mauricio Banaszeski da Silva;Pascal Bolcato;Gilson I. Wirth;Denis Flandre;Jean-Charles Delvenne
{"title":"Modeling and Predicting Noise-Induced Failure Rates in Ultra-Low-Voltage SRAM Bitcells Affected by Process Variations","authors":"Léopold Van Brandt;Michele Bonnin;Mauricio Banaszeski da Silva;Pascal Bolcato;Gilson I. Wirth;Denis Flandre;Jean-Charles Delvenne","doi":"10.1109/TCSI.2024.3525387","DOIUrl":null,"url":null,"abstract":"Stability of ultra-low-voltage SRAM bitcells in retention mode is threatened by two types of uncertainty: process variability and intrinsic noise. While variability dominates the failure probability, noise-induced bit flips in weakened bitcells lead to dynamic instability. We study both effects jointly in a unified SPICE simulation framework. Starting from a synthetic representation of process variations introduced in a previous work, we identify the cases of poor noise immunity that require thorough noise analyses. Relying on a rigorous and systematic methodology, we simulate them in the time domain so as to emulate a true data retention operation. Short times to failure, unacceptable for a practical ultra-low-power memory system application, are recorded. The transient bit-flip mechanism is analyzed and a dynamic failure criterion involving the unstable steady state is established. We conclude that, beyond static variability, the dynamic noise inflates defectiveness among SRAM bitcells. Then, a stochastic nonlinear model, fully characterizable from conventional deterministic SPICE simulations, is presented. We then leverage it to efficiently and accurately predict the mean time to failure with an analytical Eyring-Kramers formula, recently extended to account for the varying-noise behavior of nonlinear systems.","PeriodicalId":13039,"journal":{"name":"IEEE Transactions on Circuits and Systems I: Regular Papers","volume":"72 3","pages":"989-1002"},"PeriodicalIF":5.2000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems I: Regular Papers","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10836927/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Stability of ultra-low-voltage SRAM bitcells in retention mode is threatened by two types of uncertainty: process variability and intrinsic noise. While variability dominates the failure probability, noise-induced bit flips in weakened bitcells lead to dynamic instability. We study both effects jointly in a unified SPICE simulation framework. Starting from a synthetic representation of process variations introduced in a previous work, we identify the cases of poor noise immunity that require thorough noise analyses. Relying on a rigorous and systematic methodology, we simulate them in the time domain so as to emulate a true data retention operation. Short times to failure, unacceptable for a practical ultra-low-power memory system application, are recorded. The transient bit-flip mechanism is analyzed and a dynamic failure criterion involving the unstable steady state is established. We conclude that, beyond static variability, the dynamic noise inflates defectiveness among SRAM bitcells. Then, a stochastic nonlinear model, fully characterizable from conventional deterministic SPICE simulations, is presented. We then leverage it to efficiently and accurately predict the mean time to failure with an analytical Eyring-Kramers formula, recently extended to account for the varying-noise behavior of nonlinear systems.
期刊介绍:
TCAS I publishes regular papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes: - Circuits: Analog, Digital and Mixed Signal Circuits and Systems - Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic - Circuits and Systems, Power Electronics and Systems - Software for Analog-and-Logic Circuits and Systems - Control aspects of Circuits and Systems.