{"title":"Numerical Simulation of Thermal Lens Effect in Laser Diode End-Pumped Solid-State “Quasi-Rotating” Lasers","authors":"Minghai Wang;Zhuanglin Qian;Xuan Lv;Ying Wang;Peifeng Chen","doi":"10.1109/JPHOT.2025.3539517","DOIUrl":null,"url":null,"abstract":"To address thermal effects in end-pumped solid-state lasers, this paper introduces a new motion concept called “quasi-rotating” and proposes a specialized method for evaluating the thermal focal length of dynamic gain medium, which proves valuable for resonator design. Using the finite element numerical analysis method, we analyze the changes of the temperature field distribution within the crystal and demonstrate the effectiveness of the “quasi-rotating” cooling system in thermal management. The results show that the “quasi-rotating” frequency and pump power have a more significant influence on the thermal lens effect than the cooling water temperature. Compared to previous studies, our new method accurately predicts the thermal focal length of the moving crystal and provides direct guidance for resonator design, as shown in this paper. These findings provide a theoretical foundation for the design and enhancement of high-power solid-state lasers. Moreover, the approach offers meaningful insights for the design of other non-traditional lasers with dynamic gain medium.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"17 2","pages":"1-9"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10876626","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Journal","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10876626/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
To address thermal effects in end-pumped solid-state lasers, this paper introduces a new motion concept called “quasi-rotating” and proposes a specialized method for evaluating the thermal focal length of dynamic gain medium, which proves valuable for resonator design. Using the finite element numerical analysis method, we analyze the changes of the temperature field distribution within the crystal and demonstrate the effectiveness of the “quasi-rotating” cooling system in thermal management. The results show that the “quasi-rotating” frequency and pump power have a more significant influence on the thermal lens effect than the cooling water temperature. Compared to previous studies, our new method accurately predicts the thermal focal length of the moving crystal and provides direct guidance for resonator design, as shown in this paper. These findings provide a theoretical foundation for the design and enhancement of high-power solid-state lasers. Moreover, the approach offers meaningful insights for the design of other non-traditional lasers with dynamic gain medium.
期刊介绍:
Breakthroughs in the generation of light and in its control and utilization have given rise to the field of Photonics, a rapidly expanding area of science and technology with major technological and economic impact. Photonics integrates quantum electronics and optics to accelerate progress in the generation of novel photon sources and in their utilization in emerging applications at the micro and nano scales spanning from the far-infrared/THz to the x-ray region of the electromagnetic spectrum. IEEE Photonics Journal is an online-only journal dedicated to the rapid disclosure of top-quality peer-reviewed research at the forefront of all areas of photonics. Contributions addressing issues ranging from fundamental understanding to emerging technologies and applications are within the scope of the Journal. The Journal includes topics in: Photon sources from far infrared to X-rays, Photonics materials and engineered photonic structures, Integrated optics and optoelectronic, Ultrafast, attosecond, high field and short wavelength photonics, Biophotonics, including DNA photonics, Nanophotonics, Magnetophotonics, Fundamentals of light propagation and interaction; nonlinear effects, Optical data storage, Fiber optics and optical communications devices, systems, and technologies, Micro Opto Electro Mechanical Systems (MOEMS), Microwave photonics, Optical Sensors.