Study on Performance Changes of EV Traction Motor Applying CFRP Sleeve to IPMSM

IF 2.1 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Si-Uk Jung;Dong-Su Kim;Jae-Seung Lee;Jae-Woo Jung
{"title":"Study on Performance Changes of EV Traction Motor Applying CFRP Sleeve to IPMSM","authors":"Si-Uk Jung;Dong-Su Kim;Jae-Seung Lee;Jae-Woo Jung","doi":"10.1109/TMAG.2024.3509873","DOIUrl":null,"url":null,"abstract":"In general, the interior permanent magnet synchronous motor (IPMSM) is mainly used as the traction motor of electric vehicles. IPMSM uses a rib and bridge structure to prevent permanent magnets (PMs) from being separated by centrifugal force when the motor rotates. Increasing the thickness of the ribs and bridges to satisfy rigidity at high speeds acts as a cause of increased leakage flux, thereby reducing motor performance. In this article, to improve the performance of IPMSM, we benchmark existing products to derive a proto analysis model and verify it through testing. In addition, the rib and bridge shapes that cause leakage flux are removed from the proto model and a carbon fiber-reinforced plastic (CFRP) sleeve is applied. Next, stress analysis is performed to confirm whether the safety factor is met at the required maximum speed. Also, as a result of comparing the no-load characteristics, it was confirmed that the leakage flux decreased and the back electromotive force (Back EMF) increased. However, in the case of the CFRP model with increased Back EMF, the current for field weakening control increases, making it difficult to drive at high speed. Therefore, an improvement design was performed to bring the field weakening current to the same level as the proto model. As a result, the CFRP model had a similar performance to the proto model and improved efficiency.","PeriodicalId":13405,"journal":{"name":"IEEE Transactions on Magnetics","volume":"61 3","pages":"1-4"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Magnetics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10772265/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In general, the interior permanent magnet synchronous motor (IPMSM) is mainly used as the traction motor of electric vehicles. IPMSM uses a rib and bridge structure to prevent permanent magnets (PMs) from being separated by centrifugal force when the motor rotates. Increasing the thickness of the ribs and bridges to satisfy rigidity at high speeds acts as a cause of increased leakage flux, thereby reducing motor performance. In this article, to improve the performance of IPMSM, we benchmark existing products to derive a proto analysis model and verify it through testing. In addition, the rib and bridge shapes that cause leakage flux are removed from the proto model and a carbon fiber-reinforced plastic (CFRP) sleeve is applied. Next, stress analysis is performed to confirm whether the safety factor is met at the required maximum speed. Also, as a result of comparing the no-load characteristics, it was confirmed that the leakage flux decreased and the back electromotive force (Back EMF) increased. However, in the case of the CFRP model with increased Back EMF, the current for field weakening control increases, making it difficult to drive at high speed. Therefore, an improvement design was performed to bring the field weakening current to the same level as the proto model. As a result, the CFRP model had a similar performance to the proto model and improved efficiency.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Magnetics
IEEE Transactions on Magnetics 工程技术-工程:电子与电气
CiteScore
4.00
自引率
14.30%
发文量
565
审稿时长
4.1 months
期刊介绍: Science and technology related to the basic physics and engineering of magnetism, magnetic materials, applied magnetics, magnetic devices, and magnetic data storage. The IEEE Transactions on Magnetics publishes scholarly articles of archival value as well as tutorial expositions and critical reviews of classical subjects and topics of current interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信