{"title":"Impact of GPT-Driven Teaching Assistants in VR Learning Environments","authors":"Kaitlyn Tracy;Ourania Spantidi","doi":"10.1109/TLT.2025.3539179","DOIUrl":null,"url":null,"abstract":"Virtual reality (VR) has emerged as a transformative educational tool, enabling immersive learning environments that promote student engagement and understanding of complex concepts. However, despite the growing adoption of VR in education, there remains a significant gap in research exploring how generative artificial intelligence (AI), such as generative pretrained transformer can further enhance these experiences by reducing cognitive load and improving learning outcomes. This study examines the impact of an AI-driven instructor assistant in VR classrooms on student engagement, cognitive load, knowledge retention, and performance. A total of 52 participants were divided into two groups experiencing a VR lesson on the bubble sort algorithm, one with only a prescripted virtual instructor (control group), and the other with the addition of an AI instructor assistant (experimental group). Statistical analysis of postlesson quizzes and cognitive load assessments was conducted using independent t-tests and analysis of variance (ANOVA), with the cognitive load being measured through a postexperiment questionnaire. The study results indicate that the experimental group reported significantly higher engagement compared to the control group. While the AI assistant did not significantly improve postlesson assessment scores, it enhanced conceptual knowledge transfer. The experimental group also demonstrated lower intrinsic cognitive load, suggesting the assistant reduced the perceived complexity of the material. Higher germane and general cognitive loads indicated that students were more invested in meaningful learning without feeling overwhelmed.","PeriodicalId":49191,"journal":{"name":"IEEE Transactions on Learning Technologies","volume":"18 ","pages":"192-205"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Learning Technologies","FirstCategoryId":"95","ListUrlMain":"https://ieeexplore.ieee.org/document/10874155/","RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Virtual reality (VR) has emerged as a transformative educational tool, enabling immersive learning environments that promote student engagement and understanding of complex concepts. However, despite the growing adoption of VR in education, there remains a significant gap in research exploring how generative artificial intelligence (AI), such as generative pretrained transformer can further enhance these experiences by reducing cognitive load and improving learning outcomes. This study examines the impact of an AI-driven instructor assistant in VR classrooms on student engagement, cognitive load, knowledge retention, and performance. A total of 52 participants were divided into two groups experiencing a VR lesson on the bubble sort algorithm, one with only a prescripted virtual instructor (control group), and the other with the addition of an AI instructor assistant (experimental group). Statistical analysis of postlesson quizzes and cognitive load assessments was conducted using independent t-tests and analysis of variance (ANOVA), with the cognitive load being measured through a postexperiment questionnaire. The study results indicate that the experimental group reported significantly higher engagement compared to the control group. While the AI assistant did not significantly improve postlesson assessment scores, it enhanced conceptual knowledge transfer. The experimental group also demonstrated lower intrinsic cognitive load, suggesting the assistant reduced the perceived complexity of the material. Higher germane and general cognitive loads indicated that students were more invested in meaningful learning without feeling overwhelmed.
期刊介绍:
The IEEE Transactions on Learning Technologies covers all advances in learning technologies and their applications, including but not limited to the following topics: innovative online learning systems; intelligent tutors; educational games; simulation systems for education and training; collaborative learning tools; learning with mobile devices; wearable devices and interfaces for learning; personalized and adaptive learning systems; tools for formative and summative assessment; tools for learning analytics and educational data mining; ontologies for learning systems; standards and web services that support learning; authoring tools for learning materials; computer support for peer tutoring; learning via computer-mediated inquiry, field, and lab work; social learning techniques; social networks and infrastructures for learning and knowledge sharing; and creation and management of learning objects.