Modeling of Hot Deformation Behavior of the Nd-Fe-B Permanent Magnet and Its Application in Forming of Magnetic Ring

IF 2.1 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Junyou Yang;Jun Li;Shaoxun Liu;Tao Liu;Lei Zhou;Xinghua Cheng;Xiaodong Li;Shuzhou Yu;Ying Chang;Xiaojun Yu;Bo Li
{"title":"Modeling of Hot Deformation Behavior of the Nd-Fe-B Permanent Magnet and Its Application in Forming of Magnetic Ring","authors":"Junyou Yang;Jun Li;Shaoxun Liu;Tao Liu;Lei Zhou;Xinghua Cheng;Xiaodong Li;Shuzhou Yu;Ying Chang;Xiaojun Yu;Bo Li","doi":"10.1109/TMAG.2025.3527030","DOIUrl":null,"url":null,"abstract":"Hot-deformed (HD) Nd-Fe-B magnet exhibits good magnetic and mechanical properties, which are dictated by the thermomechanical behavior of the feedstock during the hot deformation process. To enhance the HD magnet properties, the hot deformation behavior of the Nd-Fe-B material must be well understood and an accurate model of the process must be established and validated. In this work, the hot deformation behaviors of the Nd-Fe-B magnet were studied by experiments and simulations. Experiments were conducted using a thermomechanical simulator at temperatures ranging from 740 °C to 820 °C and the strain rates between 0.001 and 0.05 s−1. Results indicated that the flow stress was significantly affected by strain, temperature, and strain rate. Therefore, a modified constitutive model was developed to incorporate the effects of these three factors. The model achieved a correlation coefficient of 0.991, and further was implemented for the simulation of the forming processes. The simulated results matched the experimental ones very well. Furthermore, microstructural analysis and magnetic properties results showed the microstructure and magnetic properties were sensitive to temperature and strain rate, similar to the effective strain. Finally, the modified model was used to simulate the backward-extruded (BE) process for magnetic rings with high precision, verifying the applicability of the modified constitutive model. The method combining experiments, simulation, and microstructural analysis provides an efficient tool for obtaining high-performance HD magnets and designing process routes in engineering.","PeriodicalId":13405,"journal":{"name":"IEEE Transactions on Magnetics","volume":"61 3","pages":"1-13"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Magnetics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10833760/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Hot-deformed (HD) Nd-Fe-B magnet exhibits good magnetic and mechanical properties, which are dictated by the thermomechanical behavior of the feedstock during the hot deformation process. To enhance the HD magnet properties, the hot deformation behavior of the Nd-Fe-B material must be well understood and an accurate model of the process must be established and validated. In this work, the hot deformation behaviors of the Nd-Fe-B magnet were studied by experiments and simulations. Experiments were conducted using a thermomechanical simulator at temperatures ranging from 740 °C to 820 °C and the strain rates between 0.001 and 0.05 s−1. Results indicated that the flow stress was significantly affected by strain, temperature, and strain rate. Therefore, a modified constitutive model was developed to incorporate the effects of these three factors. The model achieved a correlation coefficient of 0.991, and further was implemented for the simulation of the forming processes. The simulated results matched the experimental ones very well. Furthermore, microstructural analysis and magnetic properties results showed the microstructure and magnetic properties were sensitive to temperature and strain rate, similar to the effective strain. Finally, the modified model was used to simulate the backward-extruded (BE) process for magnetic rings with high precision, verifying the applicability of the modified constitutive model. The method combining experiments, simulation, and microstructural analysis provides an efficient tool for obtaining high-performance HD magnets and designing process routes in engineering.
Nd-Fe-B永磁体热变形行为建模及其在磁环成形中的应用
热变形钕铁硼磁体表现出良好的磁性和力学性能,这是由原料在热变形过程中的热力学行为决定的。为了提高HD磁体性能,必须充分了解Nd-Fe-B材料的热变形行为,并建立和验证其过程的精确模型。本文通过实验和模拟研究了钕铁硼磁铁的热变形行为。实验采用热机械模拟器,温度范围为740℃~ 820℃,应变速率为0.001 ~ 0.05 s−1。结果表明,应变、温度和应变速率对流变应力有显著影响。因此,我们建立了一个修正的本构模型来考虑这三个因素的影响。该模型的相关系数为0.991,可进一步用于成形过程的仿真。模拟结果与实验结果吻合较好。显微组织分析和磁性能结果表明,合金的显微组织和磁性能对温度和应变速率敏感,与有效应变相似。最后,利用修正本构模型对磁环的后挤压过程进行了高精度仿真,验证了修正本构模型的适用性。该方法将实验、仿真和显微组织分析相结合,为获得高性能高性能磁体和设计工程工艺路线提供了有效的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Magnetics
IEEE Transactions on Magnetics 工程技术-工程:电子与电气
CiteScore
4.00
自引率
14.30%
发文量
565
审稿时长
4.1 months
期刊介绍: Science and technology related to the basic physics and engineering of magnetism, magnetic materials, applied magnetics, magnetic devices, and magnetic data storage. The IEEE Transactions on Magnetics publishes scholarly articles of archival value as well as tutorial expositions and critical reviews of classical subjects and topics of current interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信