{"title":"Effects of 3D Stimuli With Frequency Ranges, Patterns, and Shapes on SSVEP-BCI Performance in Virtual Reality","authors":"Zihao Wei;Yanfei Lin;Jiayi Chen;Shuo Pan;Xiaorong Gao","doi":"10.1109/TNSRE.2025.3544308","DOIUrl":null,"url":null,"abstract":"Traditional steady-state visual evoked potential (SSVEP) based brain-computer interface (BCI) systems offer stability and simplicity in evoking brain responses, but their practical utility is limited by immovable screens for visual stimuli. Virtual Reality (VR) technology provides a more natural and immersive environment to evoke SSVEP signals. However, the design methods for visual stimuli in VR environments remain to be explored, especially under the stereoscopic vision conditions. This study investigated the effects of 3D stimuli with frequency ranges, patterns, and shapes on the performance and user experiences of VR-SSVEP. There were four patterns including three-dimensional (3D) flicker, two-dimensional (2D) flicker, 3D checkerboard, and 3D quick response (QR) code with four shapes comprising cube, sphere, cylinder, and cone at low (9-15Hz), medium (18-24Hz), and high frequencies (30-36Hz). Both offline and online experiments were conducted to analyze the effects of different parameter combinations on SSVEP-BCI performance, and a questionnaire was exploited to evaluate user experiences. Compared to high frequency range, the low and medium frequency ranges had better performance and lower user experiences. 3D checkerboard and 3D QR code patterns showed significantly better user experiences than 3D and 2D flickers for all frequency ranges. With a high level of classification performance, 3D checkerboard and 3D QR code patterns in medium frequency range could synthetically enhance the system performance and user experiences. These results could provide significant value for SSVEP-BCI application in VR environments.","PeriodicalId":13419,"journal":{"name":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","volume":"33 ","pages":"890-899"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10898078","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10898078/","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Traditional steady-state visual evoked potential (SSVEP) based brain-computer interface (BCI) systems offer stability and simplicity in evoking brain responses, but their practical utility is limited by immovable screens for visual stimuli. Virtual Reality (VR) technology provides a more natural and immersive environment to evoke SSVEP signals. However, the design methods for visual stimuli in VR environments remain to be explored, especially under the stereoscopic vision conditions. This study investigated the effects of 3D stimuli with frequency ranges, patterns, and shapes on the performance and user experiences of VR-SSVEP. There were four patterns including three-dimensional (3D) flicker, two-dimensional (2D) flicker, 3D checkerboard, and 3D quick response (QR) code with four shapes comprising cube, sphere, cylinder, and cone at low (9-15Hz), medium (18-24Hz), and high frequencies (30-36Hz). Both offline and online experiments were conducted to analyze the effects of different parameter combinations on SSVEP-BCI performance, and a questionnaire was exploited to evaluate user experiences. Compared to high frequency range, the low and medium frequency ranges had better performance and lower user experiences. 3D checkerboard and 3D QR code patterns showed significantly better user experiences than 3D and 2D flickers for all frequency ranges. With a high level of classification performance, 3D checkerboard and 3D QR code patterns in medium frequency range could synthetically enhance the system performance and user experiences. These results could provide significant value for SSVEP-BCI application in VR environments.
期刊介绍:
Rehabilitative and neural aspects of biomedical engineering, including functional electrical stimulation, acoustic dynamics, human performance measurement and analysis, nerve stimulation, electromyography, motor control and stimulation; and hardware and software applications for rehabilitation engineering and assistive devices.