Effects of 3D Stimuli With Frequency Ranges, Patterns, and Shapes on SSVEP-BCI Performance in Virtual Reality

IF 4.8 2区 医学 Q2 ENGINEERING, BIOMEDICAL
Zihao Wei;Yanfei Lin;Jiayi Chen;Shuo Pan;Xiaorong Gao
{"title":"Effects of 3D Stimuli With Frequency Ranges, Patterns, and Shapes on SSVEP-BCI Performance in Virtual Reality","authors":"Zihao Wei;Yanfei Lin;Jiayi Chen;Shuo Pan;Xiaorong Gao","doi":"10.1109/TNSRE.2025.3544308","DOIUrl":null,"url":null,"abstract":"Traditional steady-state visual evoked potential (SSVEP) based brain-computer interface (BCI) systems offer stability and simplicity in evoking brain responses, but their practical utility is limited by immovable screens for visual stimuli. Virtual Reality (VR) technology provides a more natural and immersive environment to evoke SSVEP signals. However, the design methods for visual stimuli in VR environments remain to be explored, especially under the stereoscopic vision conditions. This study investigated the effects of 3D stimuli with frequency ranges, patterns, and shapes on the performance and user experiences of VR-SSVEP. There were four patterns including three-dimensional (3D) flicker, two-dimensional (2D) flicker, 3D checkerboard, and 3D quick response (QR) code with four shapes comprising cube, sphere, cylinder, and cone at low (9-15Hz), medium (18-24Hz), and high frequencies (30-36Hz). Both offline and online experiments were conducted to analyze the effects of different parameter combinations on SSVEP-BCI performance, and a questionnaire was exploited to evaluate user experiences. Compared to high frequency range, the low and medium frequency ranges had better performance and lower user experiences. 3D checkerboard and 3D QR code patterns showed significantly better user experiences than 3D and 2D flickers for all frequency ranges. With a high level of classification performance, 3D checkerboard and 3D QR code patterns in medium frequency range could synthetically enhance the system performance and user experiences. These results could provide significant value for SSVEP-BCI application in VR environments.","PeriodicalId":13419,"journal":{"name":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","volume":"33 ","pages":"890-899"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10898078","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10898078/","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional steady-state visual evoked potential (SSVEP) based brain-computer interface (BCI) systems offer stability and simplicity in evoking brain responses, but their practical utility is limited by immovable screens for visual stimuli. Virtual Reality (VR) technology provides a more natural and immersive environment to evoke SSVEP signals. However, the design methods for visual stimuli in VR environments remain to be explored, especially under the stereoscopic vision conditions. This study investigated the effects of 3D stimuli with frequency ranges, patterns, and shapes on the performance and user experiences of VR-SSVEP. There were four patterns including three-dimensional (3D) flicker, two-dimensional (2D) flicker, 3D checkerboard, and 3D quick response (QR) code with four shapes comprising cube, sphere, cylinder, and cone at low (9-15Hz), medium (18-24Hz), and high frequencies (30-36Hz). Both offline and online experiments were conducted to analyze the effects of different parameter combinations on SSVEP-BCI performance, and a questionnaire was exploited to evaluate user experiences. Compared to high frequency range, the low and medium frequency ranges had better performance and lower user experiences. 3D checkerboard and 3D QR code patterns showed significantly better user experiences than 3D and 2D flickers for all frequency ranges. With a high level of classification performance, 3D checkerboard and 3D QR code patterns in medium frequency range could synthetically enhance the system performance and user experiences. These results could provide significant value for SSVEP-BCI application in VR environments.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.60
自引率
8.20%
发文量
479
审稿时长
6-12 weeks
期刊介绍: Rehabilitative and neural aspects of biomedical engineering, including functional electrical stimulation, acoustic dynamics, human performance measurement and analysis, nerve stimulation, electromyography, motor control and stimulation; and hardware and software applications for rehabilitation engineering and assistive devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信