Advancing 6G: Survey for Explainable AI on Communications and Network Slicing

IF 6.3 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Haochen Sun;Yifan Liu;Ahmed Al-Tahmeesschi;Avishek Nag;Mohadeseh Soleimanpour;Berk Canberk;Hüseyin Arslan;Hamed Ahmadi
{"title":"Advancing 6G: Survey for Explainable AI on Communications and Network Slicing","authors":"Haochen Sun;Yifan Liu;Ahmed Al-Tahmeesschi;Avishek Nag;Mohadeseh Soleimanpour;Berk Canberk;Hüseyin Arslan;Hamed Ahmadi","doi":"10.1109/OJCOMS.2025.3534626","DOIUrl":null,"url":null,"abstract":"The unprecedented advancement of Artificial Intelligence (AI) has positioned Explainable AI (XAI) as a critical enabler in addressing the complexities of next-generation wireless communications. With the evolution of the 6G networks, characterized by ultra-low latency, massive data rates, and intricate network structures, the need for transparency, interpretability, and fairness in AI-driven decision-making has become more urgent than ever. This survey provides a comprehensive review of the current state and future potential of XAI in communications, with a focus on network slicing, a fundamental technology for resource management in 6G. By systematically categorizing XAI methodologies–ranging from modelagnostic to model-specific approaches, and from pre-model to post-model strategies–this paper identifies their unique advantages, limitations, and applications in wireless communications. Moreover, the survey emphasizes the role of XAI in network slicing for vehicular network, highlighting its ability to enhance transparency and reliability in scenarios requiring real-time decision-making and high-stakes operational environments. Real-world use cases are examined to illustrate how XAI-driven systems can improve resource allocation, facilitate fault diagnosis, and meet regulatory requirements for ethical AI deployment. By addressing the inherent challenges of applying XAI in complex, dynamic networks, this survey offers critical insights into the convergence of XAI and 6G technologies. Future research directions, including scalability, real-time applicability, and interdisciplinary integration, are discussed, establishing a foundation for advancing transparent and trustworthy AI in 6G communications systems.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"6 ","pages":"1372-1412"},"PeriodicalIF":6.3000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10854503","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10854503/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The unprecedented advancement of Artificial Intelligence (AI) has positioned Explainable AI (XAI) as a critical enabler in addressing the complexities of next-generation wireless communications. With the evolution of the 6G networks, characterized by ultra-low latency, massive data rates, and intricate network structures, the need for transparency, interpretability, and fairness in AI-driven decision-making has become more urgent than ever. This survey provides a comprehensive review of the current state and future potential of XAI in communications, with a focus on network slicing, a fundamental technology for resource management in 6G. By systematically categorizing XAI methodologies–ranging from modelagnostic to model-specific approaches, and from pre-model to post-model strategies–this paper identifies their unique advantages, limitations, and applications in wireless communications. Moreover, the survey emphasizes the role of XAI in network slicing for vehicular network, highlighting its ability to enhance transparency and reliability in scenarios requiring real-time decision-making and high-stakes operational environments. Real-world use cases are examined to illustrate how XAI-driven systems can improve resource allocation, facilitate fault diagnosis, and meet regulatory requirements for ethical AI deployment. By addressing the inherent challenges of applying XAI in complex, dynamic networks, this survey offers critical insights into the convergence of XAI and 6G technologies. Future research directions, including scalability, real-time applicability, and interdisciplinary integration, are discussed, establishing a foundation for advancing transparent and trustworthy AI in 6G communications systems.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
13.70
自引率
3.80%
发文量
94
审稿时长
10 weeks
期刊介绍: The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023. The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include: Systems and network architecture, control and management Protocols, software, and middleware Quality of service, reliability, and security Modulation, detection, coding, and signaling Switching and routing Mobile and portable communications Terminals and other end-user devices Networks for content distribution and distributed computing Communications-based distributed resources control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信