Nucleic Acid Framework-Enabled Spatial Organization for Biological Applications

Rui Zhang, Xiaolei Zuo* and Fangfei Yin*, 
{"title":"Nucleic Acid Framework-Enabled Spatial Organization for Biological Applications","authors":"Rui Zhang,&nbsp;Xiaolei Zuo* and Fangfei Yin*,&nbsp;","doi":"10.1021/cbe.4c0016410.1021/cbe.4c00164","DOIUrl":null,"url":null,"abstract":"<p >Nucleic acid frameworks (NAFs) are artificially prepared from natural nucleic acids with a precise size and structure. DNA origami exhibits controllable 2D lamellar structure and thus is easily used to construct 3D structures with different morphologies. Tetrahedral DNA nanostructures (TDNs) are prepared with four DNA strands that hybridize to each other with a tetrahedral structure. Here we summarize molecular spatial organization with DNA origami and TDNs as models for 2D- and 3D-recombinations, discuss NAF-based biomimicking of proteins and biomembranes, and introduce the identification probes, functional groups, and intercalators for biosensing, bioimaging, and nanomedicine therapy. NAFs are also extended to applications to guide the formation of inorganic nanoparticles with precise size and structure. Thus, the NAFs exhibit special organization, are easy to functionalize, and are becoming an important platform for interdisciplinary study and applications, such as nanotechnology, biochemistry, synthetic biology, and nanomedicine.</p>","PeriodicalId":100230,"journal":{"name":"Chem & Bio Engineering","volume":"2 2","pages":"71–86 71–86"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/cbe.4c00164","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem & Bio Engineering","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/cbe.4c00164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nucleic acid frameworks (NAFs) are artificially prepared from natural nucleic acids with a precise size and structure. DNA origami exhibits controllable 2D lamellar structure and thus is easily used to construct 3D structures with different morphologies. Tetrahedral DNA nanostructures (TDNs) are prepared with four DNA strands that hybridize to each other with a tetrahedral structure. Here we summarize molecular spatial organization with DNA origami and TDNs as models for 2D- and 3D-recombinations, discuss NAF-based biomimicking of proteins and biomembranes, and introduce the identification probes, functional groups, and intercalators for biosensing, bioimaging, and nanomedicine therapy. NAFs are also extended to applications to guide the formation of inorganic nanoparticles with precise size and structure. Thus, the NAFs exhibit special organization, are easy to functionalize, and are becoming an important platform for interdisciplinary study and applications, such as nanotechnology, biochemistry, synthetic biology, and nanomedicine.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信