Conversion of Non-biodegradable Super Absorbing Polymer (SAP) Waste into MnO-rich Functional Supercapacitor Carbon by a Sustainable, Low-Temperature Activation Process

Aparna Deshpande*, Sarika Jadhav, Kiran Manohar, Shivam Rawat, Suresh Gosavi* and Sadhana Rayalu, 
{"title":"Conversion of Non-biodegradable Super Absorbing Polymer (SAP) Waste into MnO-rich Functional Supercapacitor Carbon by a Sustainable, Low-Temperature Activation Process","authors":"Aparna Deshpande*,&nbsp;Sarika Jadhav,&nbsp;Kiran Manohar,&nbsp;Shivam Rawat,&nbsp;Suresh Gosavi* and Sadhana Rayalu,&nbsp;","doi":"10.1021/acssusresmgt.4c0025910.1021/acssusresmgt.4c00259","DOIUrl":null,"url":null,"abstract":"<p >A non-biodegradable super absorbing polymer (SAP) is primarily used in biomedical devices and female menstrual sanitary waste pads. Its safe disposal is a massive problem that needs global strategic cognizance. The sanitary waste is mainly comprised of high molecular weight acrylate-based polymers having higher water-absorbent properties with a significant carbon atom-based cross-linked backbone. Here we have derived a workable energy storage material from menstrual sanitary waste with minimal energy input, making it environmentally viable. In this study, a rich carbon matrix was produced from pyrolysis of sanitary waste pads with KMnO<sub>4</sub> based activation at 300 °C. The obtained carbon showed the presence of MnO moieties having desirable properties as a supercapacitor electrode. The stored energy density in the synthesized carbons was found to be 11.23 Wh kg<sup>–1</sup> at a 0.275 kW kg<sup>–1</sup> power density. The derived carbon shows excellent capacity retention of 84% and electrochemical stability until 10,000 cycles. These porous functional carbons produced from non-biodegradable SAPs thus make a sustainable potential resource for energy storage applications.</p>","PeriodicalId":100015,"journal":{"name":"ACS Sustainable Resource Management","volume":"2 2","pages":"234–242 234–242"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Resource Management","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssusresmgt.4c00259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A non-biodegradable super absorbing polymer (SAP) is primarily used in biomedical devices and female menstrual sanitary waste pads. Its safe disposal is a massive problem that needs global strategic cognizance. The sanitary waste is mainly comprised of high molecular weight acrylate-based polymers having higher water-absorbent properties with a significant carbon atom-based cross-linked backbone. Here we have derived a workable energy storage material from menstrual sanitary waste with minimal energy input, making it environmentally viable. In this study, a rich carbon matrix was produced from pyrolysis of sanitary waste pads with KMnO4 based activation at 300 °C. The obtained carbon showed the presence of MnO moieties having desirable properties as a supercapacitor electrode. The stored energy density in the synthesized carbons was found to be 11.23 Wh kg–1 at a 0.275 kW kg–1 power density. The derived carbon shows excellent capacity retention of 84% and electrochemical stability until 10,000 cycles. These porous functional carbons produced from non-biodegradable SAPs thus make a sustainable potential resource for energy storage applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信