Physics-informed radial basis function network based on Hausdorff fractal distance for solving Hausdorff derivative elliptic problems

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Lin Qiu , Fajie Wang , Yingjie Liang , Qing-Hua Qin
{"title":"Physics-informed radial basis function network based on Hausdorff fractal distance for solving Hausdorff derivative elliptic problems","authors":"Lin Qiu ,&nbsp;Fajie Wang ,&nbsp;Yingjie Liang ,&nbsp;Qing-Hua Qin","doi":"10.1016/j.camwa.2025.02.012","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes a physics-informed radial basis function network (RBFN) based on Hausdorff fractal distance to resolve Hausdorff derivative elliptic problems. In the proposed scheme, we improve the performance of RBFN via setting the source points outside the computational domain, and allocating distinct shape parameter values to each RBF. Furthermore, on the basis of the modified RBFN, we take full advantage of the physical laws described by Hausdorff derivative partial differential equations and the constraints imposed by the boundary conditions, and establish a physics-informed optimization system for Hausdorff derivative elliptic problems. Utilizing MATLAB optimization toolbox function <em>lsqnonlin</em>, we solve the optimization system and then obtain the optimized network parameters including coordinates of source points, values of shape parameters and unknown RBF weights simultaneously, with which we deal with Hausdorff derivative elliptic problems successfully. Numerical experiments associated with acoustic, anisotropic heat conduction and fourth order problems are carried out to demonstrate the performance of the developed methodology.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"183 ","pages":"Pages 271-286"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125000653","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a physics-informed radial basis function network (RBFN) based on Hausdorff fractal distance to resolve Hausdorff derivative elliptic problems. In the proposed scheme, we improve the performance of RBFN via setting the source points outside the computational domain, and allocating distinct shape parameter values to each RBF. Furthermore, on the basis of the modified RBFN, we take full advantage of the physical laws described by Hausdorff derivative partial differential equations and the constraints imposed by the boundary conditions, and establish a physics-informed optimization system for Hausdorff derivative elliptic problems. Utilizing MATLAB optimization toolbox function lsqnonlin, we solve the optimization system and then obtain the optimized network parameters including coordinates of source points, values of shape parameters and unknown RBF weights simultaneously, with which we deal with Hausdorff derivative elliptic problems successfully. Numerical experiments associated with acoustic, anisotropic heat conduction and fourth order problems are carried out to demonstrate the performance of the developed methodology.
基于Hausdorff分形距离的物理信息径向基函数网络求解Hausdorff微分椭圆问题
提出了一种基于Hausdorff分形距离的物理信息径向基函数网络(RBFN)来解决Hausdorff导数椭圆问题。在该方案中,我们通过在计算域外设置源点,并为每个RBF分配不同的形状参数值来提高RBF的性能。在此基础上,充分利用Hausdorff导数偏微分方程所描述的物理规律和边界条件的约束,建立了Hausdorff导数椭圆型问题的物理信息优化系统。利用MATLAB优化工具箱lsqnonlin函数对优化系统进行求解,同时得到优化后的网络参数,包括源点坐标、形状参数值和未知RBF权值,并成功地处理了Hausdorff导数椭圆问题。通过与声学、各向异性热传导和四阶问题相关的数值实验来验证所开发方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信