Magneto-ionic vortices: voltage-reconfigurable swirling-spin analog-memory nanomagnets

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Irena Spasojevic, Zheng Ma, Aleix Barrera, Federica Celegato, Alessandro Magni, Sandra Ruiz-Gómez, Michael Foerster, Anna Palau, Paola Tiberto, Kristen S. Buchanan, Jordi Sort
{"title":"Magneto-ionic vortices: voltage-reconfigurable swirling-spin analog-memory nanomagnets","authors":"Irena Spasojevic, Zheng Ma, Aleix Barrera, Federica Celegato, Alessandro Magni, Sandra Ruiz-Gómez, Michael Foerster, Anna Palau, Paola Tiberto, Kristen S. Buchanan, Jordi Sort","doi":"10.1038/s41467-025-57321-8","DOIUrl":null,"url":null,"abstract":"<p>Rapid progress in information technologies has spurred the need for innovative memory concepts, for which advanced data-processing methods and tailor-made materials are required. Here we introduce a previously unexplored nanoscale magnetic object: an analog magnetic vortex controlled by electric-field-induced ion motion, termed magneto-ionic vortex or “vortion”. This state arises from paramagnetic FeCoN through voltage gating and gradual N<sup>3–</sup> ion extraction within patterned nanodots. Unlike traditional vortex states, vortions offer comprehensive analog adjustment of key properties such as magnetization amplitude, nucleation/annihilation fields, or coercivity using voltage as an energy-efficient tuning knob. This manipulation occurs post-synthesis, obviating the need for energy-demanding methods like laser pulses or spin-torque currents. By leveraging an overlooked aspect of N<sup>3–</sup> magneto-ionics—planar ion migration within nanodots—precise control of the magnetic layer’s thickness is achieved, which enables reversible transitions among paramagnetic, single-domain, and vortion states, offering future prospects for analog computing, multi-state data storage, or brain-inspired devices.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"6 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-57321-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Rapid progress in information technologies has spurred the need for innovative memory concepts, for which advanced data-processing methods and tailor-made materials are required. Here we introduce a previously unexplored nanoscale magnetic object: an analog magnetic vortex controlled by electric-field-induced ion motion, termed magneto-ionic vortex or “vortion”. This state arises from paramagnetic FeCoN through voltage gating and gradual N3– ion extraction within patterned nanodots. Unlike traditional vortex states, vortions offer comprehensive analog adjustment of key properties such as magnetization amplitude, nucleation/annihilation fields, or coercivity using voltage as an energy-efficient tuning knob. This manipulation occurs post-synthesis, obviating the need for energy-demanding methods like laser pulses or spin-torque currents. By leveraging an overlooked aspect of N3– magneto-ionics—planar ion migration within nanodots—precise control of the magnetic layer’s thickness is achieved, which enables reversible transitions among paramagnetic, single-domain, and vortion states, offering future prospects for analog computing, multi-state data storage, or brain-inspired devices.

Abstract Image

磁离子漩涡:电压可重构的旋转自旋模拟记忆纳米磁体
信息技术的快速发展刺激了对创新记忆概念的需求,为此需要先进的数据处理方法和量身定制的材料。在这里,我们介绍了一个以前未开发的纳米级磁性物体:一个由电场诱导的离子运动控制的模拟磁涡流,称为磁离子涡流或“涡旋”。这种状态是由顺磁性FeCoN通过电压门控和在图案纳米点内逐渐提取N3离子引起的。与传统的涡旋状态不同,涡旋提供了对关键特性的全面模拟调节,如磁化幅度、成核/湮灭场或矫顽力,使用电压作为节能调谐旋钮。这种操作发生在合成后,避免了对激光脉冲或自旋扭矩电流等耗能方法的需求。通过利用N3的一个被忽视的方面-磁离子-纳米点内的平面离子迁移-实现了对磁层厚度的精确控制,从而实现了顺磁性,单畴和涡旋状态之间的可逆转换,为模拟计算,多态数据存储或脑启发设备提供了未来的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信