Juliette Lesbats, Aurélia Brillac, Julie A. Reisz, Parnika Mukherjee, Charlène Lhuissier, Mónica Fernández-Monreal, Jean-William Dupuy, Angèle Sequeira, Gaia Tioli, Celia De La Calle Arregui, Benoît Pinson, Daniel Wendisch, Benoît Rousseau, Alejo Efeyan, Leif Erik Sander, Angelo D’Alessandro, Johan Garaude
{"title":"Macrophages recycle phagocytosed bacteria to fuel immunometabolic responses","authors":"Juliette Lesbats, Aurélia Brillac, Julie A. Reisz, Parnika Mukherjee, Charlène Lhuissier, Mónica Fernández-Monreal, Jean-William Dupuy, Angèle Sequeira, Gaia Tioli, Celia De La Calle Arregui, Benoît Pinson, Daniel Wendisch, Benoît Rousseau, Alejo Efeyan, Leif Erik Sander, Angelo D’Alessandro, Johan Garaude","doi":"10.1038/s41586-025-08629-4","DOIUrl":null,"url":null,"abstract":"<p>Macrophages specialize in phagocytosis, a cellular process that eliminates extracellular matter, including microorganisms, through internalization and degradation<sup>1,2</sup>. Despite the critical role of phagocytosis during bacterial infection, the fate of phagocytosed microbial cargo and its impact on the host cell are poorly understood. In this study, we show that ingested bacteria constitute an alternative nutrient source that skews immunometabolic host responses. By tracing stable isotope-labelled bacteria, we found that phagolysosomal degradation of bacteria provides carbon atoms and amino acids that are recycled into various metabolic pathways, including glutathione and itaconate biosynthesis, and satisfies the bioenergetic needs of macrophages. Metabolic recycling of microbially derived nutrients is regulated by the nutrient-sensing mechanistic target of rapamycin complex C1 and is intricately tied to microbial viability. Dead bacteria, as opposed to live bacteria, are enriched in cyclic adenosine monophosphate, sustain the cellular adenosine monophosphate pool and subsequently activate adenosine monophosphate protein kinase to inhibit the mechanistic target of rapamycin complex C1. Consequently, killed bacteria strongly fuel metabolic recycling and support macrophage survival but elicit decreased reactive oxygen species production and reduced interleukin-1β secretion compared to viable bacteria. These results provide a new insight into the fate of engulfed microorganisms and highlight a microbial viability-associated metabolite that triggers host metabolic and immune responses. Our findings hold promise for shaping immunometabolic intervention for various immune-related pathologies.</p>","PeriodicalId":18787,"journal":{"name":"Nature","volume":"5 1","pages":""},"PeriodicalIF":50.5000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41586-025-08629-4","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Macrophages specialize in phagocytosis, a cellular process that eliminates extracellular matter, including microorganisms, through internalization and degradation1,2. Despite the critical role of phagocytosis during bacterial infection, the fate of phagocytosed microbial cargo and its impact on the host cell are poorly understood. In this study, we show that ingested bacteria constitute an alternative nutrient source that skews immunometabolic host responses. By tracing stable isotope-labelled bacteria, we found that phagolysosomal degradation of bacteria provides carbon atoms and amino acids that are recycled into various metabolic pathways, including glutathione and itaconate biosynthesis, and satisfies the bioenergetic needs of macrophages. Metabolic recycling of microbially derived nutrients is regulated by the nutrient-sensing mechanistic target of rapamycin complex C1 and is intricately tied to microbial viability. Dead bacteria, as opposed to live bacteria, are enriched in cyclic adenosine monophosphate, sustain the cellular adenosine monophosphate pool and subsequently activate adenosine monophosphate protein kinase to inhibit the mechanistic target of rapamycin complex C1. Consequently, killed bacteria strongly fuel metabolic recycling and support macrophage survival but elicit decreased reactive oxygen species production and reduced interleukin-1β secretion compared to viable bacteria. These results provide a new insight into the fate of engulfed microorganisms and highlight a microbial viability-associated metabolite that triggers host metabolic and immune responses. Our findings hold promise for shaping immunometabolic intervention for various immune-related pathologies.
期刊介绍:
Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.