Determination of the birth-mass function of neutron stars from observations

IF 12.9 1区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Zhi-Qiang You, Xingjiang Zhu, Xiaojin Liu, Bernhard Müller, Alexander Heger, Simon Stevenson, Eric Thrane, Zu-Cheng Chen, Ling Sun, Paul Lasky, Duncan K. Galloway, George Hobbs, Richard N. Manchester, He Gao, Zong-Hong Zhu
{"title":"Determination of the birth-mass function of neutron stars from observations","authors":"Zhi-Qiang You, Xingjiang Zhu, Xiaojin Liu, Bernhard Müller, Alexander Heger, Simon Stevenson, Eric Thrane, Zu-Cheng Chen, Ling Sun, Paul Lasky, Duncan K. Galloway, George Hobbs, Richard N. Manchester, He Gao, Zong-Hong Zhu","doi":"10.1038/s41550-025-02487-w","DOIUrl":null,"url":null,"abstract":"<p>The birth-mass function of neutron stars encodes rich information about supernova explosions, double-star evolution and the properties of matter under extreme conditions. To date, it has remained poorly constrained by observations, however. Applying probabilistic corrections to account for mass accreted by recycled pulsars in binary systems to mass measurements of 90 neutron stars, we find that the birth masses of neutron stars can be described by a unimodal distribution that smoothly turns on at 1.1 <i>M</i><sub><span>⊙</span></sub> and peaks at ~1.27 <i>M</i><sub><span>⊙</span></sub>, before declining as a steep power law. Such a ‘turn-on’ power-law distribution is strongly favoured against the widely adopted empirical double-Gaussian model at the 3<i>σ</i> level. The power-law shape may be inherited from the initial mass function of massive stars, but the relative dearth of massive neutron stars implies that single stars with initial masses greater than ~18 <i>M</i><sub><span>⊙</span></sub> do not form neutron stars, in agreement with the absence of massive red supergiant progenitors of supernovae.</p>","PeriodicalId":18778,"journal":{"name":"Nature Astronomy","volume":"83 1 Pt 2 1","pages":""},"PeriodicalIF":12.9000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Astronomy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41550-025-02487-w","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The birth-mass function of neutron stars encodes rich information about supernova explosions, double-star evolution and the properties of matter under extreme conditions. To date, it has remained poorly constrained by observations, however. Applying probabilistic corrections to account for mass accreted by recycled pulsars in binary systems to mass measurements of 90 neutron stars, we find that the birth masses of neutron stars can be described by a unimodal distribution that smoothly turns on at 1.1 M and peaks at ~1.27 M, before declining as a steep power law. Such a ‘turn-on’ power-law distribution is strongly favoured against the widely adopted empirical double-Gaussian model at the 3σ level. The power-law shape may be inherited from the initial mass function of massive stars, but the relative dearth of massive neutron stars implies that single stars with initial masses greater than ~18 M do not form neutron stars, in agreement with the absence of massive red supergiant progenitors of supernovae.

Abstract Image

从观测中确定中子星的诞生-质量函数
中子星的诞生-质量函数编码了关于超新星爆炸、双星演化和极端条件下物质性质的丰富信息。然而,迄今为止,它仍然没有受到观测结果的约束。应用概率修正来解释双星系统中循环脉冲星的质量增加到90颗中子星的质量测量,我们发现中子星的出生质量可以用单峰分布来描述,该分布在1.1 M⊙平滑地打开,在~1.27 M⊙达到峰值,然后以陡峭的幂律下降。这种“开启”的幂律分布与广泛采用的3σ水平的经验双高斯模型相比,是非常有利的。幂律形状可能继承自大质量恒星的初始质量函数,但大质量中子星的相对缺乏意味着初始质量大于~18 M⊙的单星不能形成中子星,这与超新星的大质量红超巨星祖先的缺失一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Astronomy
Nature Astronomy Physics and Astronomy-Astronomy and Astrophysics
CiteScore
19.50
自引率
2.80%
发文量
252
期刊介绍: Nature Astronomy, the oldest science, has played a significant role in the history of Nature. Throughout the years, pioneering discoveries such as the first quasar, exoplanet, and understanding of spiral nebulae have been reported in the journal. With the introduction of Nature Astronomy, the field now receives expanded coverage, welcoming research in astronomy, astrophysics, and planetary science. The primary objective is to encourage closer collaboration among researchers in these related areas. Similar to other journals under the Nature brand, Nature Astronomy boasts a devoted team of professional editors, ensuring fairness and rigorous peer-review processes. The journal maintains high standards in copy-editing and production, ensuring timely publication and editorial independence. In addition to original research, Nature Astronomy publishes a wide range of content, including Comments, Reviews, News and Views, Features, and Correspondence. This diverse collection covers various disciplines within astronomy and includes contributions from a diverse range of voices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信