Saichao Dang, Hasan H. Almahfoudh, Abdulrahman M. Alajlan, Hussam Qasem, Jiake Wang, Yingkun Zhu, Osman M. Bakr, Boon S. Ooi, Qiaoqiang Gan
{"title":"Sky cooling for LED streetlights","authors":"Saichao Dang, Hasan H. Almahfoudh, Abdulrahman M. Alajlan, Hussam Qasem, Jiake Wang, Yingkun Zhu, Osman M. Bakr, Boon S. Ooi, Qiaoqiang Gan","doi":"10.1038/s41377-024-01724-7","DOIUrl":null,"url":null,"abstract":"<p>Thermal management is a critical challenge for semiconductor light-emitting diodes (LEDs), as inadequate heat dissipation reduces luminous efficiency and shortens the devices’ lifespan. Thus, there is an urgent need for more effective cooling strategies to enhance the energy efficiency of LEDs. LED streetlights, which operate primarily at night and experience high chip temperatures, could benefit greatly from improved thermal management. In this study, we introduce a sky-facing radiative cooling strategy for outdoor LED streetlights, an innovative yet less explored approach for thermal management of optoelectronics. Our method employs a nanoporous polyethylene (nanoPE) material that possesses both infrared transparency and visible reflectivity. This approach enables the direct release of heat generated by the LED through a sky-facing radiative cooling channel, while also reflecting a significant portion of the light back for illumination. By incorporating nanoPE as a cover for sky-facing LED lights, we achieved a remarkable temperature reduction of 7.8 °C in controlled laboratory settings and 4.4 °C in outdoor environments. These reductions were accompanied by an efficiency improvement of approximately 5% and 4%, respectively. This enhanced efficiency translates into substantial annual energy savings, estimated at 1.9 terawatt-hours when considering the use of LED streetlights in the United States. Furthermore, this electricity saving corresponds to a reduction of approximately 1.3 million metric tons of CO2 emissions, equivalent to 0.03% of the total annual CO2 emissions by the United States in 2018.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"51 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-024-01724-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Thermal management is a critical challenge for semiconductor light-emitting diodes (LEDs), as inadequate heat dissipation reduces luminous efficiency and shortens the devices’ lifespan. Thus, there is an urgent need for more effective cooling strategies to enhance the energy efficiency of LEDs. LED streetlights, which operate primarily at night and experience high chip temperatures, could benefit greatly from improved thermal management. In this study, we introduce a sky-facing radiative cooling strategy for outdoor LED streetlights, an innovative yet less explored approach for thermal management of optoelectronics. Our method employs a nanoporous polyethylene (nanoPE) material that possesses both infrared transparency and visible reflectivity. This approach enables the direct release of heat generated by the LED through a sky-facing radiative cooling channel, while also reflecting a significant portion of the light back for illumination. By incorporating nanoPE as a cover for sky-facing LED lights, we achieved a remarkable temperature reduction of 7.8 °C in controlled laboratory settings and 4.4 °C in outdoor environments. These reductions were accompanied by an efficiency improvement of approximately 5% and 4%, respectively. This enhanced efficiency translates into substantial annual energy savings, estimated at 1.9 terawatt-hours when considering the use of LED streetlights in the United States. Furthermore, this electricity saving corresponds to a reduction of approximately 1.3 million metric tons of CO2 emissions, equivalent to 0.03% of the total annual CO2 emissions by the United States in 2018.