Viktor Rindert, Zbigniew Galazka, Mathias Schubert, Vanya Darakchieva
{"title":"High-frequency/high-field electron paramagnetic resonance generalized spectroscopic ellipsometry characterization of Cr3+ in β -Ga2O3","authors":"Viktor Rindert, Zbigniew Galazka, Mathias Schubert, Vanya Darakchieva","doi":"10.1063/5.0255802","DOIUrl":null,"url":null,"abstract":"Electron paramagnetic resonance of Cr3+ ions in β-Ga2O3 is investigated using terahertz spectroscopic ellipsometry under magnetic field sweeping, a technique that enables the polarization resolving capabilities of ellipsometry for magnetic resonance measurements. We employed a single-crystal chromium-doped β-Ga2O3 sample, grown by the Czochralski method, and performed ellipsometry measurements at magnetic field strengths ranging from 2 to 8 T, at frequencies from 82 to 125 and 190 to 230 GHz, and at a temperature of 15 K. Analysis of the frequency-field diagrams derived from all Mueller matrix elements allowed us to differentiate between the effects of electron spin Zeeman splitting and zero-field splitting and to accurately determine the anisotropic Zeeman splitting g-tensor and the zero-field splitting parameters. Our results confirm that Cr3+ ions predominantly substitute into octahedral gallium sites. Line shape analysis of Mueller matrix element spectra using the Bloch–Brillouin model provides the spin volume concentration of Cr3+ sites, showing very good agreement with results from chemical analysis by inductively coupled plasma-optical emission spectroscopy and suggesting minimal occupation of sites with inactive electron paramagnetic resonance. This study enhances our understanding of the magnetic and electronic properties of chromium-doped β-Ga2O3 and demonstrates the effectiveness of high-frequency/high-field electron paramagnetic resonance generalized spectroscopic ellipsometry for characterizing defects in ultrawide-bandgap semiconductors.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"29 4 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0255802","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Electron paramagnetic resonance of Cr3+ ions in β-Ga2O3 is investigated using terahertz spectroscopic ellipsometry under magnetic field sweeping, a technique that enables the polarization resolving capabilities of ellipsometry for magnetic resonance measurements. We employed a single-crystal chromium-doped β-Ga2O3 sample, grown by the Czochralski method, and performed ellipsometry measurements at magnetic field strengths ranging from 2 to 8 T, at frequencies from 82 to 125 and 190 to 230 GHz, and at a temperature of 15 K. Analysis of the frequency-field diagrams derived from all Mueller matrix elements allowed us to differentiate between the effects of electron spin Zeeman splitting and zero-field splitting and to accurately determine the anisotropic Zeeman splitting g-tensor and the zero-field splitting parameters. Our results confirm that Cr3+ ions predominantly substitute into octahedral gallium sites. Line shape analysis of Mueller matrix element spectra using the Bloch–Brillouin model provides the spin volume concentration of Cr3+ sites, showing very good agreement with results from chemical analysis by inductively coupled plasma-optical emission spectroscopy and suggesting minimal occupation of sites with inactive electron paramagnetic resonance. This study enhances our understanding of the magnetic and electronic properties of chromium-doped β-Ga2O3 and demonstrates the effectiveness of high-frequency/high-field electron paramagnetic resonance generalized spectroscopic ellipsometry for characterizing defects in ultrawide-bandgap semiconductors.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.