BP-MPC: Optimizing the Closed-Loop Performance of MPC Using Backpropagation

IF 7 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Riccardo Zuliani;Efe C. Balta;John Lygeros
{"title":"BP-MPC: Optimizing the Closed-Loop Performance of MPC Using Backpropagation","authors":"Riccardo Zuliani;Efe C. Balta;John Lygeros","doi":"10.1109/TAC.2025.3545767","DOIUrl":null,"url":null,"abstract":"Model predictive control (MPC) is pervasive in research and industry. However, designing the cost function and the constraints of the MPC to maximize closed-loop performance remains an open problem. To achieve optimal tuning, we propose a backpropagation scheme that solves a policy optimization problem with nonlinear system dynamics and MPC policies. We enforce the system dynamics using linearization and allow the MPC problem to contain elements that depend on the current system state and on past MPC solutions. Moreover, we propose a simple extension that can deal with losses of feasibility. Our approach, unlike other methods in the literature, enjoys convergence guarantees.","PeriodicalId":13201,"journal":{"name":"IEEE Transactions on Automatic Control","volume":"70 9","pages":"5690-5704"},"PeriodicalIF":7.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Automatic Control","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10903987/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Model predictive control (MPC) is pervasive in research and industry. However, designing the cost function and the constraints of the MPC to maximize closed-loop performance remains an open problem. To achieve optimal tuning, we propose a backpropagation scheme that solves a policy optimization problem with nonlinear system dynamics and MPC policies. We enforce the system dynamics using linearization and allow the MPC problem to contain elements that depend on the current system state and on past MPC solutions. Moreover, we propose a simple extension that can deal with losses of feasibility. Our approach, unlike other methods in the literature, enjoys convergence guarantees.
BP-MPC:利用反向传播优化MPC的闭环性能
模型预测控制(MPC)在研究和工业中得到广泛应用。然而,设计成本函数和MPC的约束以最大化闭环性能仍然是一个悬而未决的问题。为了达到最优调整,我们提出了一种反向传播方案,该方案解决了非线性系统动力学和MPC策略的策略优化问题。我们使用线性化来强化系统动力学,并允许MPC问题包含依赖于当前系统状态和过去MPC解决方案的元素。此外,我们提出了一个简单的扩展,可以处理的损失的可行性。与文献中的其他方法不同,我们的方法具有收敛性保证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Automatic Control
IEEE Transactions on Automatic Control 工程技术-工程:电子与电气
CiteScore
11.30
自引率
5.90%
发文量
824
审稿时长
9 months
期刊介绍: In the IEEE Transactions on Automatic Control, the IEEE Control Systems Society publishes high-quality papers on the theory, design, and applications of control engineering. Two types of contributions are regularly considered: 1) Papers: Presentation of significant research, development, or application of control concepts. 2) Technical Notes and Correspondence: Brief technical notes, comments on published areas or established control topics, corrections to papers and notes published in the Transactions. In addition, special papers (tutorials, surveys, and perspectives on the theory and applications of control systems topics) are solicited.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信