A Shift Toward Supercritical Brain Dynamics Predicts Alzheimers Disease Progression

IF 4.4 2区 医学 Q1 NEUROSCIENCES
Ehtasham Javed, Isabel Suárez-Méndez, Gianluca Susi, Juan Verdejo Román, J Matias Palva, Fernando Maestú, Satu Palva
{"title":"A Shift Toward Supercritical Brain Dynamics Predicts Alzheimers Disease Progression","authors":"Ehtasham Javed, Isabel Suárez-Méndez, Gianluca Susi, Juan Verdejo Román, J Matias Palva, Fernando Maestú, Satu Palva","doi":"10.1523/jneurosci.0688-24.2024","DOIUrl":null,"url":null,"abstract":"<p>Alzheimer&rsquo;s disease (AD) is the most common form of dementia with continuum of disease progression of increasing severity from subjective cognitive decline (SCD) to mild cognitive impairment (MCI) and lastly to AD. The transition from MCI to AD has been linked to brain hypersynchronization, but the underlying mechanisms leading to this are unknown. Here, we hypothesized that excessive excitation in AD disease progression would shift brain dynamics toward supercriticality across an extended regime of critical-like dynamics. In this framework, healthy brain activity during aging preserves operation at near the critical phase transition at balanced excitation&ndash;inhibition (E/I). To test this hypothesis, we used source-reconstructed resting-state MEG data from a cross-sectional cohort (<I>N</I> = 343) of individuals with SCD, MCI, and healthy controls (HC) as well as from a longitudinal cohort (<I>N</I> = 45) of MCI patients. We then assessed brain criticality by quantifying long-range temporal correlations (LRTCs) and functional EI (fE/I) of neuronal oscillations. LRTCs were attenuated in SCD in spectrally and anatomically constrained regions while this breakdown was progressively more widespread in MC. In parallel, fE/I was increased in the MCI but not in the SC cohort. Both observations also predicted the disease progression in the longitudinal cohort. Finally, using machine learning trained on functional (LRTCs, fE/I) and structural (MTL volumes) features, we show that LRTCs and f/EI are the most informative features for accurate classification of individuals with SCD while structural changes accurate classify the individuals with MCI. These findings establish that a shift toward supercritical brain dynamics reflects early AD disease progression.</p>","PeriodicalId":50114,"journal":{"name":"Journal of Neuroscience","volume":"68 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/jneurosci.0688-24.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Alzheimer’s disease (AD) is the most common form of dementia with continuum of disease progression of increasing severity from subjective cognitive decline (SCD) to mild cognitive impairment (MCI) and lastly to AD. The transition from MCI to AD has been linked to brain hypersynchronization, but the underlying mechanisms leading to this are unknown. Here, we hypothesized that excessive excitation in AD disease progression would shift brain dynamics toward supercriticality across an extended regime of critical-like dynamics. In this framework, healthy brain activity during aging preserves operation at near the critical phase transition at balanced excitation–inhibition (E/I). To test this hypothesis, we used source-reconstructed resting-state MEG data from a cross-sectional cohort (N = 343) of individuals with SCD, MCI, and healthy controls (HC) as well as from a longitudinal cohort (N = 45) of MCI patients. We then assessed brain criticality by quantifying long-range temporal correlations (LRTCs) and functional EI (fE/I) of neuronal oscillations. LRTCs were attenuated in SCD in spectrally and anatomically constrained regions while this breakdown was progressively more widespread in MC. In parallel, fE/I was increased in the MCI but not in the SC cohort. Both observations also predicted the disease progression in the longitudinal cohort. Finally, using machine learning trained on functional (LRTCs, fE/I) and structural (MTL volumes) features, we show that LRTCs and f/EI are the most informative features for accurate classification of individuals with SCD while structural changes accurate classify the individuals with MCI. These findings establish that a shift toward supercritical brain dynamics reflects early AD disease progression.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Neuroscience
Journal of Neuroscience 医学-神经科学
CiteScore
9.30
自引率
3.80%
发文量
1164
审稿时长
12 months
期刊介绍: JNeurosci (ISSN 0270-6474) is an official journal of the Society for Neuroscience. It is published weekly by the Society, fifty weeks a year, one volume a year. JNeurosci publishes papers on a broad range of topics of general interest to those working on the nervous system. Authors now have an Open Choice option for their published articles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信