Ameya R. Kirtane, Jianling Bi, Netra U. Rajesh, Chaoyang Tang, Miguel Jimenez, Emily Witt, Megan K. McGovern, Arielle B. Cafi, Samual J. Hatfield, Lauren Rosenstock, Sarah L. Becker, Nicole Machado, Veena Venkatachalam, Dylan Freitas, Xisha Huang, Alvin Chan, Aaron Lopes, Hyunjoon Kim, Nayoon Kim, Joy E. Collins, Michelle E. Howard, Srija Manchkanti, Theodore S. Hong, James D. Byrne, Giovanni Traverso
{"title":"Radioprotection of healthy tissue via nanoparticle-delivered mRNA encoding for a damage-suppressor protein found in tardigrades","authors":"Ameya R. Kirtane, Jianling Bi, Netra U. Rajesh, Chaoyang Tang, Miguel Jimenez, Emily Witt, Megan K. McGovern, Arielle B. Cafi, Samual J. Hatfield, Lauren Rosenstock, Sarah L. Becker, Nicole Machado, Veena Venkatachalam, Dylan Freitas, Xisha Huang, Alvin Chan, Aaron Lopes, Hyunjoon Kim, Nayoon Kim, Joy E. Collins, Michelle E. Howard, Srija Manchkanti, Theodore S. Hong, James D. Byrne, Giovanni Traverso","doi":"10.1038/s41551-025-01360-5","DOIUrl":null,"url":null,"abstract":"<p>Patients undergoing radiation therapy experience debilitating side effects because of toxicity arising from radiation-induced DNA strand breaks in normal peritumoural cells. Here, inspired by the ability of tardigrades to resist extreme radiation through the expression of a damage-suppressor protein that binds to DNA and reduces strand breaks, we show that the local and transient expression of the protein can reduce radiation-induced DNA damage in oral and rectal epithelial tissues (which are commonly affected during radiotherapy for head-and-neck and prostate cancers, respectively). We used ionizable lipid nanoparticles supplemented with biodegradable cationic polymers to enhance the transfection efficiency and delivery of messenger RNA encoding the damage-suppressor protein into buccal and rectal tissues. In mice with orthotopic oral cancer, messenger RNA-based radioprotection of normal tissue preserved the efficacy of radiation therapy. The strategy may be broadly applicable to the protection of healthy tissue from DNA-damaging agents.</p>","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"16 1","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41551-025-01360-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Patients undergoing radiation therapy experience debilitating side effects because of toxicity arising from radiation-induced DNA strand breaks in normal peritumoural cells. Here, inspired by the ability of tardigrades to resist extreme radiation through the expression of a damage-suppressor protein that binds to DNA and reduces strand breaks, we show that the local and transient expression of the protein can reduce radiation-induced DNA damage in oral and rectal epithelial tissues (which are commonly affected during radiotherapy for head-and-neck and prostate cancers, respectively). We used ionizable lipid nanoparticles supplemented with biodegradable cationic polymers to enhance the transfection efficiency and delivery of messenger RNA encoding the damage-suppressor protein into buccal and rectal tissues. In mice with orthotopic oral cancer, messenger RNA-based radioprotection of normal tissue preserved the efficacy of radiation therapy. The strategy may be broadly applicable to the protection of healthy tissue from DNA-damaging agents.
期刊介绍:
Nature Biomedical Engineering is an online-only monthly journal that was launched in January 2017. It aims to publish original research, reviews, and commentary focusing on applied biomedicine and health technology. The journal targets a diverse audience, including life scientists who are involved in developing experimental or computational systems and methods to enhance our understanding of human physiology. It also covers biomedical researchers and engineers who are engaged in designing or optimizing therapies, assays, devices, or procedures for diagnosing or treating diseases. Additionally, clinicians, who make use of research outputs to evaluate patient health or administer therapy in various clinical settings and healthcare contexts, are also part of the target audience.