Multimission Observations of Relativistic Electrons and High-speed Jets Linked to Shock-generated Transients

Savvas Raptis, Martin Lindberg, Terry Z. Liu, Drew L. Turner, Ahmad Lalti, Yufei Zhou, Primož Kajdič, Athanasios Kouloumvakos, David G. Sibeck, Laura Vuorinen, Adam Michael, Mykhaylo Shumko, Adnane Osmane, Eva Krämer, Lucile Turc, Tomas Karlsson, Christos Katsavrias, Lynn B. Wilson, Hadi Madanian, Xóchitl Blanco-Cano, Ian J. Cohen and C. Philippe Escoubet
{"title":"Multimission Observations of Relativistic Electrons and High-speed Jets Linked to Shock-generated Transients","authors":"Savvas Raptis, Martin Lindberg, Terry Z. Liu, Drew L. Turner, Ahmad Lalti, Yufei Zhou, Primož Kajdič, Athanasios Kouloumvakos, David G. Sibeck, Laura Vuorinen, Adam Michael, Mykhaylo Shumko, Adnane Osmane, Eva Krämer, Lucile Turc, Tomas Karlsson, Christos Katsavrias, Lynn B. Wilson, Hadi Madanian, Xóchitl Blanco-Cano, Ian J. Cohen and C. Philippe Escoubet","doi":"10.3847/2041-8213/adb154","DOIUrl":null,"url":null,"abstract":"Shock-generated transients, such as hot flow anomalies (HFAs), upstream of planetary bow shocks, play a critical role in electron acceleration. Using multimission data from NASA’s Magnetospheric Multiscale and ESA’s Cluster missions, we demonstrate the transmission of HFAs through Earth’s quasi-parallel bow shock, accelerating electrons to relativistic energies in the process. Energetic electrons initially accelerated upstream are shown to remain broadly confined within the transmitted transient structures downstream, where they get further energized due to the elevated compression levels potentially by betatron acceleration. Additionally, high-speed jets form at the compressive edges of HFAs, exhibiting a significant increase in dynamic pressure and potentially contributing to further localized compression. Our findings emphasize the efficiency of quasi-parallel shocks in driving particle acceleration far beyond the immediate shock transition region, expanding the acceleration region to a larger spatial domain. Finally, this study underscores the importance of a multiscale observational approach in understanding the convoluted processes behind collisionless shock physics and their broader implications.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/adb154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Shock-generated transients, such as hot flow anomalies (HFAs), upstream of planetary bow shocks, play a critical role in electron acceleration. Using multimission data from NASA’s Magnetospheric Multiscale and ESA’s Cluster missions, we demonstrate the transmission of HFAs through Earth’s quasi-parallel bow shock, accelerating electrons to relativistic energies in the process. Energetic electrons initially accelerated upstream are shown to remain broadly confined within the transmitted transient structures downstream, where they get further energized due to the elevated compression levels potentially by betatron acceleration. Additionally, high-speed jets form at the compressive edges of HFAs, exhibiting a significant increase in dynamic pressure and potentially contributing to further localized compression. Our findings emphasize the efficiency of quasi-parallel shocks in driving particle acceleration far beyond the immediate shock transition region, expanding the acceleration region to a larger spatial domain. Finally, this study underscores the importance of a multiscale observational approach in understanding the convoluted processes behind collisionless shock physics and their broader implications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信