Viroid-like “obelisk” agents are widespread in the ocean and exceed the abundance of RNA viruses in the prokaryotic fraction

Javier López-Simón, Marcos de la Peña, Manuel Martínez-García
{"title":"Viroid-like “obelisk” agents are widespread in the ocean and exceed the abundance of RNA viruses in the prokaryotic fraction","authors":"Javier López-Simón, Marcos de la Peña, Manuel Martínez-García","doi":"10.1093/ismejo/wraf033","DOIUrl":null,"url":null,"abstract":"“Obelisks” are recently discovered RNA viroid-like elements present in diverse environments with no phylogenetic similarity to any known biological agent. Obelisks were first identified in the human gut and in a commensal bacterium acting as a replicative host. They have a circular ∼1 kb RNA genome, rod-like secondary structures, and the encoding of a protein superfamily called “Oblins”. We performed a large-scale search of Obelisks in the ocean using the Pebblescout program and the transcriptomic Sequence Archive Read databases, revealing the biogeography and abundance of these viroid-like RNA elements. We detected 45 Obelisk genomes resulting in 35 marine clusters at the species level. These Obelisks were detected in the prokaryotic fraction and to a lesser extent in the eukaryotic fraction, and distributed across all the oceans from surface to mesopelagic including the Arctic, and even in the coldest seawater of Earth beneath the Antarctic Ross Ice Shelf. The Obelisk hallmark protein Oblin-1 confirmed by 3D models was found in various marine samples. Some of the detected marine Obelisks harbour hammerhead self-cleaving ribozymes in both polarities. In the prokaryotic, but not the eukaryotic, fraction of the Tara Ocean dataset, relative abundance of Obelisks calculated by transcriptomic fragment recruitment indicated that they are abundant in marine samples, reaching or even exceeding the relative abundance of the previously discovered uncultured RNA viruses. In conclusion, Obelisks are abundant and widespread viroid-like elements that should be included in ocean biogeochemical models.","PeriodicalId":516554,"journal":{"name":"The ISME Journal","volume":"129 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The ISME Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismejo/wraf033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

“Obelisks” are recently discovered RNA viroid-like elements present in diverse environments with no phylogenetic similarity to any known biological agent. Obelisks were first identified in the human gut and in a commensal bacterium acting as a replicative host. They have a circular ∼1 kb RNA genome, rod-like secondary structures, and the encoding of a protein superfamily called “Oblins”. We performed a large-scale search of Obelisks in the ocean using the Pebblescout program and the transcriptomic Sequence Archive Read databases, revealing the biogeography and abundance of these viroid-like RNA elements. We detected 45 Obelisk genomes resulting in 35 marine clusters at the species level. These Obelisks were detected in the prokaryotic fraction and to a lesser extent in the eukaryotic fraction, and distributed across all the oceans from surface to mesopelagic including the Arctic, and even in the coldest seawater of Earth beneath the Antarctic Ross Ice Shelf. The Obelisk hallmark protein Oblin-1 confirmed by 3D models was found in various marine samples. Some of the detected marine Obelisks harbour hammerhead self-cleaving ribozymes in both polarities. In the prokaryotic, but not the eukaryotic, fraction of the Tara Ocean dataset, relative abundance of Obelisks calculated by transcriptomic fragment recruitment indicated that they are abundant in marine samples, reaching or even exceeding the relative abundance of the previously discovered uncultured RNA viruses. In conclusion, Obelisks are abundant and widespread viroid-like elements that should be included in ocean biogeochemical models.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信