Motor somatotopy impacts imagery strategy success in human intracortical brain-computer interfaces.

N G Kunigk, H R Schone, C Gontier, W Hockeimer, A F Tortolani, N G Hatsopoulos, J E Downey, S M Chase, M L Boninger, B D Dekleva, J L Collinger
{"title":"Motor somatotopy impacts imagery strategy success in human intracortical brain-computer interfaces.","authors":"N G Kunigk, H R Schone, C Gontier, W Hockeimer, A F Tortolani, N G Hatsopoulos, J E Downey, S M Chase, M L Boninger, B D Dekleva, J L Collinger","doi":"10.1088/1741-2552/adb995","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective:</i>The notion of a somatotopically organized motor cortex, with movements of different body parts being controlled by spatially distinct areas of cortex, is well known. However, recent studies have challenged this notion and suggested a more distributed representation of movement control. This shift in perspective has significant implications, particularly when considering the implantation location of electrode arrays for intracortical brain-computer interfaces (iBCIs). We sought to evaluate whether the location of neural recordings from the precentral gyrus, and thus the underlying somatotopy, has any impact on the imagery strategies that can enable successful iBCI control.<i>Approach:</i>Three individuals with a spinal cord injury were enrolled in an ongoing clinical trial of an iBCI. Participants had two intracortical microelectrode arrays implanted in the arm and/or hand areas of the precentral gyrus based on presurgical functional imaging. Neural data were recorded while participants attempted to perform movements of the hand, wrist, elbow, and shoulder.<i>Main results:</i>We found that electrode arrays that were located more medially recorded significantly more activity during attempted proximal arm movements (elbow, shoulder) than did lateral arrays, which captured more activity related to attempted distal arm movements (hand, wrist). We also evaluated the relative contribution from the two arrays implanted in each participant to decoding accuracy during calibration of an iBCI decoder for translation and grasping tasks. For both task types, imagery strategy (e.g. reaching vs wrist movements) had a significant impact on the relative contributions of each array to decoding. Overall, we found some evidence of broad tuning to arm and hand movements; however, there was a clear bias in the amount of information accessible about each movement type in spatially distinct areas of cortex.<i>Significance:</i>These results demonstrate that classical concepts of somatotopy can have real consequences for iBCI use, and highlight the importance of considering somatotopy when planning iBCI implantation.</p>","PeriodicalId":94096,"journal":{"name":"Journal of neural engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-2552/adb995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective:The notion of a somatotopically organized motor cortex, with movements of different body parts being controlled by spatially distinct areas of cortex, is well known. However, recent studies have challenged this notion and suggested a more distributed representation of movement control. This shift in perspective has significant implications, particularly when considering the implantation location of electrode arrays for intracortical brain-computer interfaces (iBCIs). We sought to evaluate whether the location of neural recordings from the precentral gyrus, and thus the underlying somatotopy, has any impact on the imagery strategies that can enable successful iBCI control.Approach:Three individuals with a spinal cord injury were enrolled in an ongoing clinical trial of an iBCI. Participants had two intracortical microelectrode arrays implanted in the arm and/or hand areas of the precentral gyrus based on presurgical functional imaging. Neural data were recorded while participants attempted to perform movements of the hand, wrist, elbow, and shoulder.Main results:We found that electrode arrays that were located more medially recorded significantly more activity during attempted proximal arm movements (elbow, shoulder) than did lateral arrays, which captured more activity related to attempted distal arm movements (hand, wrist). We also evaluated the relative contribution from the two arrays implanted in each participant to decoding accuracy during calibration of an iBCI decoder for translation and grasping tasks. For both task types, imagery strategy (e.g. reaching vs wrist movements) had a significant impact on the relative contributions of each array to decoding. Overall, we found some evidence of broad tuning to arm and hand movements; however, there was a clear bias in the amount of information accessible about each movement type in spatially distinct areas of cortex.Significance:These results demonstrate that classical concepts of somatotopy can have real consequences for iBCI use, and highlight the importance of considering somatotopy when planning iBCI implantation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信