The Human Energy Balance: Uncovering the Hidden Variables of Obesity.

IF 2.9 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Nikolaos Theodorakis, Maria Nikolaou
{"title":"The Human Energy Balance: Uncovering the Hidden Variables of Obesity.","authors":"Nikolaos Theodorakis, Maria Nikolaou","doi":"10.3390/diseases13020055","DOIUrl":null,"url":null,"abstract":"<p><p>Obesity has emerged as a global epidemic, creating an increased burden of weight-related diseases and straining healthcare systems worldwide. While the fundamental principle of energy balance-caloric intake versus expenditure-remains central to weight regulation, real-world outcomes often deviate from simplistic predictions due to a multitude of physiological and environmental factors. Genetic predispositions, variations in basal metabolic rates, adaptive thermogenesis, physical activity, and nutrient losses via fecal and urinary excretion contribute to interindividual differences in energy homeostasis. Additionally, factors such as meal timing, macronutrient composition, gut microbiota dynamics, and diet-induced thermogenesis (DIT) further modulate energy utilization and metabolic efficiency. This Perspective explores key physiological determinants of the energy balance, while also highlighting the clinical significance of thrifty versus spendthrifty metabolic phenotypes. Key strategies for individualized weight management include precision calorimetry, circadian-aligned meal timing, the use of protein- and whole food diets to enhance DIT, and increases in non-exercise activity, as well as mild cold exposure and the use of thermogenic agents (e.g., capsaicin-like compounds) to stimulate brown adipose tissue activity. A comprehensive, personalized approach to obesity management that moves beyond restrictive caloric models is essential to achieving sustainable weight control and improving long-term metabolic health. Integrating these multifactorial insights into clinical practice will enhance obesity treatment strategies, fostering more effective and enduring interventions.</p>","PeriodicalId":72832,"journal":{"name":"Diseases (Basel, Switzerland)","volume":"13 2","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diseases (Basel, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/diseases13020055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Obesity has emerged as a global epidemic, creating an increased burden of weight-related diseases and straining healthcare systems worldwide. While the fundamental principle of energy balance-caloric intake versus expenditure-remains central to weight regulation, real-world outcomes often deviate from simplistic predictions due to a multitude of physiological and environmental factors. Genetic predispositions, variations in basal metabolic rates, adaptive thermogenesis, physical activity, and nutrient losses via fecal and urinary excretion contribute to interindividual differences in energy homeostasis. Additionally, factors such as meal timing, macronutrient composition, gut microbiota dynamics, and diet-induced thermogenesis (DIT) further modulate energy utilization and metabolic efficiency. This Perspective explores key physiological determinants of the energy balance, while also highlighting the clinical significance of thrifty versus spendthrifty metabolic phenotypes. Key strategies for individualized weight management include precision calorimetry, circadian-aligned meal timing, the use of protein- and whole food diets to enhance DIT, and increases in non-exercise activity, as well as mild cold exposure and the use of thermogenic agents (e.g., capsaicin-like compounds) to stimulate brown adipose tissue activity. A comprehensive, personalized approach to obesity management that moves beyond restrictive caloric models is essential to achieving sustainable weight control and improving long-term metabolic health. Integrating these multifactorial insights into clinical practice will enhance obesity treatment strategies, fostering more effective and enduring interventions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信