The Influence of Forward Trunk Lean During Single-Limb Landing on Achilles Tendon Force in Physically Active Females.

IF 1.1 4区 医学 Q4 ENGINEERING, BIOMEDICAL
Lee T Atkins, Hyung Suk Yang, Vaishnavi Chiddarwar, C Roger James
{"title":"The Influence of Forward Trunk Lean During Single-Limb Landing on Achilles Tendon Force in Physically Active Females.","authors":"Lee T Atkins, Hyung Suk Yang, Vaishnavi Chiddarwar, C Roger James","doi":"10.1123/jab.2024-0173","DOIUrl":null,"url":null,"abstract":"<p><p>It is unknown if forward trunk lean during single-limb landing influences the Achilles tendon force (ATF). This study examined the effect of forward trunk lean during single-limb landing on the ATF in physically active females. Thirty physically active females (23.7 [3.6] y) performed 5 landing trials (0.25 m) using self-selected and forward trunk lean strategies. Dependent variables included peak ATF; average ATF development rate; and sagittal trunk, hip, knee, and ankle angles and moments at the time of peak ATF. The increased forward trunk lean (mean difference (MD) = 14.1°; 95% CI, 11.0 to 17.2; P < .001) caused a decrease in peak ATF (MD = -3.5 N/kg; 95% CI, -5.8 to -1.2; P = .004) and ankle plantar flexion moment (MD = -0.2 N·m/kg; 95% CI, -0.4 to -0.1; P = .002). In contrast, forward trunk lean resulted in greater hip (MD = 15.2°; 95% CI, 11.9 to 18.4; P < .001) and knee flexion (MD = 7.7°; 95% CI , 4.7 to 10.7; P < .001) angles, and hip extension moment (MD = 0.3 N·m/kg; 95% CI, 0.1 to 0.5; P = .002). Forward trunk lean changes predicted peak ATF changes (r = .33, P = .04). Sagittal trunk posture influences the ATF in physically active females during single-limb landing and may effectively alter loading in patients recovering from Achilles tendinopathy.</p>","PeriodicalId":54883,"journal":{"name":"Journal of Applied Biomechanics","volume":" ","pages":"1-7"},"PeriodicalIF":1.1000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1123/jab.2024-0173","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

It is unknown if forward trunk lean during single-limb landing influences the Achilles tendon force (ATF). This study examined the effect of forward trunk lean during single-limb landing on the ATF in physically active females. Thirty physically active females (23.7 [3.6] y) performed 5 landing trials (0.25 m) using self-selected and forward trunk lean strategies. Dependent variables included peak ATF; average ATF development rate; and sagittal trunk, hip, knee, and ankle angles and moments at the time of peak ATF. The increased forward trunk lean (mean difference (MD) = 14.1°; 95% CI, 11.0 to 17.2; P < .001) caused a decrease in peak ATF (MD = -3.5 N/kg; 95% CI, -5.8 to -1.2; P = .004) and ankle plantar flexion moment (MD = -0.2 N·m/kg; 95% CI, -0.4 to -0.1; P = .002). In contrast, forward trunk lean resulted in greater hip (MD = 15.2°; 95% CI, 11.9 to 18.4; P < .001) and knee flexion (MD = 7.7°; 95% CI , 4.7 to 10.7; P < .001) angles, and hip extension moment (MD = 0.3 N·m/kg; 95% CI, 0.1 to 0.5; P = .002). Forward trunk lean changes predicted peak ATF changes (r = .33, P = .04). Sagittal trunk posture influences the ATF in physically active females during single-limb landing and may effectively alter loading in patients recovering from Achilles tendinopathy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Biomechanics
Journal of Applied Biomechanics 医学-工程:生物医学
CiteScore
2.00
自引率
0.00%
发文量
47
审稿时长
6-12 weeks
期刊介绍: The mission of the Journal of Applied Biomechanics (JAB) is to disseminate the highest quality peer-reviewed studies that utilize biomechanical strategies to advance the study of human movement. Areas of interest include clinical biomechanics, gait and posture mechanics, musculoskeletal and neuromuscular biomechanics, sport mechanics, and biomechanical modeling. Studies of sport performance that explicitly generalize to broader activities, contribute substantially to fundamental understanding of human motion, or are in a sport that enjoys wide participation, are welcome. Also within the scope of JAB are studies using biomechanical strategies to investigate the structure, control, function, and state (health and disease) of animals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信