GraphSleepFormer: a multi-modal graph neural network for sleep staging in OSA patients.

Chen Wang, Xiuquan Jiang, Chengyan Lv, Qi Meng, Pengcheng Zhao, Di Yan, Chao Feng, Fangzhou Xu, Shanshan Lu, Tzyy-Ping Jung, Jiancai Leng
{"title":"GraphSleepFormer: a multi-modal graph neural network for sleep staging in OSA patients.","authors":"Chen Wang, Xiuquan Jiang, Chengyan Lv, Qi Meng, Pengcheng Zhao, Di Yan, Chao Feng, Fangzhou Xu, Shanshan Lu, Tzyy-Ping Jung, Jiancai Leng","doi":"10.1088/1741-2552/adb996","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>Obstructive sleep apnea (OSA) is a prevalent sleep disorder. Accurate sleep staging is one of the prerequisites in the study of sleep-related disorders and the evaluation of sleep quality. We introduce a novel GraphSleepFormer (GSF) network designed to effectively capture global dependencies and node characteristics in graph-structured data.<i>Approach.</i>The network incorporates centrality coding and spatial coding into its architecture. It employs adaptive learning of adjacency matrices for spatial encoding between channels located on the head, thereby encoding graph structure information to enhance the model's representation and understanding of spatial relationships. Centrality encoding integrates the degree matrix into node features, assigning varying degrees of attention to different channels. Ablation experiments demonstrate the effectiveness of these encoding methods. The Shapley Additive Explanations (SHAP) method was employed to evaluate the contribution of each channel in sleep staging, highlighting the necessity of using multimodal data.<i>Main results.</i>We trained our model on overnight polysomnography data collected from 28 OSA patients in a clinical setting and achieved an overall accuracy of 80.10%. GSF achieved performance comparable to state-of-the-art methods on two subsets of the ISRUC database.<i>Significance.</i>The GSF Accurately identifies sleep periods, providing a critical basis for diagnosing and treating OSA, thereby contributing to advancements in sleep medicine.</p>","PeriodicalId":94096,"journal":{"name":"Journal of neural engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-2552/adb996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective.Obstructive sleep apnea (OSA) is a prevalent sleep disorder. Accurate sleep staging is one of the prerequisites in the study of sleep-related disorders and the evaluation of sleep quality. We introduce a novel GraphSleepFormer (GSF) network designed to effectively capture global dependencies and node characteristics in graph-structured data.Approach.The network incorporates centrality coding and spatial coding into its architecture. It employs adaptive learning of adjacency matrices for spatial encoding between channels located on the head, thereby encoding graph structure information to enhance the model's representation and understanding of spatial relationships. Centrality encoding integrates the degree matrix into node features, assigning varying degrees of attention to different channels. Ablation experiments demonstrate the effectiveness of these encoding methods. The Shapley Additive Explanations (SHAP) method was employed to evaluate the contribution of each channel in sleep staging, highlighting the necessity of using multimodal data.Main results.We trained our model on overnight polysomnography data collected from 28 OSA patients in a clinical setting and achieved an overall accuracy of 80.10%. GSF achieved performance comparable to state-of-the-art methods on two subsets of the ISRUC database.Significance.The GSF Accurately identifies sleep periods, providing a critical basis for diagnosing and treating OSA, thereby contributing to advancements in sleep medicine.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信