Direct Cryosectioning of Drosophila Heads for Enhanced Brain Fluorescence Staining and Immunostaining.

IF 1.2 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES
John Watson, Jonathan R Roth, Girish C Melkani
{"title":"Direct Cryosectioning of Drosophila Heads for Enhanced Brain Fluorescence Staining and Immunostaining.","authors":"John Watson, Jonathan R Roth, Girish C Melkani","doi":"10.3791/67791","DOIUrl":null,"url":null,"abstract":"<p><p>Immunostaining Drosophila melanogaster brains is essential for exploring the mechanisms behind complex behaviors, neural circuits, and protein expression patterns. Traditional methods often involve challenges such as performing complex dissection, maintaining tissue integrity, and visualizing specific expression patterns during high-resolution imaging. We present an optimized protocol that combines cryosectioning with fluorescence staining and immunostaining. This method improves tissue preservation and signal clarity and reduces the need for laborious dissection for Drosophila brain imaging. The method entails rapid dissection, optimal fixation, cryoprotection, and cryosectioning, followed by fluorescent staining and immunostaining. The protocol significantly reduces tissue damage, enhances antibody penetration, and yields sharp, well-defined images. We demonstrate the effectiveness of this approach by visualizing specific neural populations and synaptic proteins with high fidelity. This versatile method allows for the analysis of various protein markers in the adult brain across multiple z-planes and can be adapted for other tissues and model organisms. The protocol provides a reliable and efficient tool for researchers conducting high-quality immunohistochemistry in Drosophila neurobiology studies. This method's detailed visualization facilitates comprehensive analysis of neuroanatomy, pathology, and protein localization, making it particularly valuable for neuroscience research.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 216","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jove-Journal of Visualized Experiments","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3791/67791","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Immunostaining Drosophila melanogaster brains is essential for exploring the mechanisms behind complex behaviors, neural circuits, and protein expression patterns. Traditional methods often involve challenges such as performing complex dissection, maintaining tissue integrity, and visualizing specific expression patterns during high-resolution imaging. We present an optimized protocol that combines cryosectioning with fluorescence staining and immunostaining. This method improves tissue preservation and signal clarity and reduces the need for laborious dissection for Drosophila brain imaging. The method entails rapid dissection, optimal fixation, cryoprotection, and cryosectioning, followed by fluorescent staining and immunostaining. The protocol significantly reduces tissue damage, enhances antibody penetration, and yields sharp, well-defined images. We demonstrate the effectiveness of this approach by visualizing specific neural populations and synaptic proteins with high fidelity. This versatile method allows for the analysis of various protein markers in the adult brain across multiple z-planes and can be adapted for other tissues and model organisms. The protocol provides a reliable and efficient tool for researchers conducting high-quality immunohistochemistry in Drosophila neurobiology studies. This method's detailed visualization facilitates comprehensive analysis of neuroanatomy, pathology, and protein localization, making it particularly valuable for neuroscience research.

果蝇头部直接冷冻切片增强脑荧光染色和免疫染色。
黑腹果蝇大脑免疫染色对于探索复杂行为、神经回路和蛋白质表达模式背后的机制至关重要。传统的方法通常涉及一些挑战,如在高分辨率成像过程中进行复杂的解剖、保持组织完整性和可视化特定的表达模式。我们提出了一种将冷冻切片与荧光染色和免疫染色相结合的优化方案。这种方法提高了组织保存和信号清晰度,减少了对果蝇脑成像的费力解剖的需要。该方法需要快速解剖、最佳固定、冷冻保护和冷冻切片,然后进行荧光染色和免疫染色。该方案显著减少组织损伤,增强抗体穿透,并产生清晰,清晰的图像。我们通过高保真度可视化特定神经群和突触蛋白来证明这种方法的有效性。这种通用的方法允许在多个z平面上分析成人大脑中的各种蛋白质标记物,并且可以适用于其他组织和模式生物。该方案为研究人员在果蝇神经生物学研究中进行高质量的免疫组织化学提供了可靠和有效的工具。该方法的详细可视化有助于神经解剖学,病理学和蛋白质定位的全面分析,使其对神经科学研究特别有价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Jove-Journal of Visualized Experiments
Jove-Journal of Visualized Experiments MULTIDISCIPLINARY SCIENCES-
CiteScore
2.10
自引率
0.00%
发文量
992
期刊介绍: JoVE, the Journal of Visualized Experiments, is the world''s first peer reviewed scientific video journal. Established in 2006, JoVE is devoted to publishing scientific research in a visual format to help researchers overcome two of the biggest challenges facing the scientific research community today; poor reproducibility and the time and labor intensive nature of learning new experimental techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信