{"title":"Direct Cryosectioning of Drosophila Heads for Enhanced Brain Fluorescence Staining and Immunostaining.","authors":"John Watson, Jonathan R Roth, Girish C Melkani","doi":"10.3791/67791","DOIUrl":null,"url":null,"abstract":"<p><p>Immunostaining Drosophila melanogaster brains is essential for exploring the mechanisms behind complex behaviors, neural circuits, and protein expression patterns. Traditional methods often involve challenges such as performing complex dissection, maintaining tissue integrity, and visualizing specific expression patterns during high-resolution imaging. We present an optimized protocol that combines cryosectioning with fluorescence staining and immunostaining. This method improves tissue preservation and signal clarity and reduces the need for laborious dissection for Drosophila brain imaging. The method entails rapid dissection, optimal fixation, cryoprotection, and cryosectioning, followed by fluorescent staining and immunostaining. The protocol significantly reduces tissue damage, enhances antibody penetration, and yields sharp, well-defined images. We demonstrate the effectiveness of this approach by visualizing specific neural populations and synaptic proteins with high fidelity. This versatile method allows for the analysis of various protein markers in the adult brain across multiple z-planes and can be adapted for other tissues and model organisms. The protocol provides a reliable and efficient tool for researchers conducting high-quality immunohistochemistry in Drosophila neurobiology studies. This method's detailed visualization facilitates comprehensive analysis of neuroanatomy, pathology, and protein localization, making it particularly valuable for neuroscience research.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 216","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jove-Journal of Visualized Experiments","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3791/67791","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Immunostaining Drosophila melanogaster brains is essential for exploring the mechanisms behind complex behaviors, neural circuits, and protein expression patterns. Traditional methods often involve challenges such as performing complex dissection, maintaining tissue integrity, and visualizing specific expression patterns during high-resolution imaging. We present an optimized protocol that combines cryosectioning with fluorescence staining and immunostaining. This method improves tissue preservation and signal clarity and reduces the need for laborious dissection for Drosophila brain imaging. The method entails rapid dissection, optimal fixation, cryoprotection, and cryosectioning, followed by fluorescent staining and immunostaining. The protocol significantly reduces tissue damage, enhances antibody penetration, and yields sharp, well-defined images. We demonstrate the effectiveness of this approach by visualizing specific neural populations and synaptic proteins with high fidelity. This versatile method allows for the analysis of various protein markers in the adult brain across multiple z-planes and can be adapted for other tissues and model organisms. The protocol provides a reliable and efficient tool for researchers conducting high-quality immunohistochemistry in Drosophila neurobiology studies. This method's detailed visualization facilitates comprehensive analysis of neuroanatomy, pathology, and protein localization, making it particularly valuable for neuroscience research.
期刊介绍:
JoVE, the Journal of Visualized Experiments, is the world''s first peer reviewed scientific video journal. Established in 2006, JoVE is devoted to publishing scientific research in a visual format to help researchers overcome two of the biggest challenges facing the scientific research community today; poor reproducibility and the time and labor intensive nature of learning new experimental techniques.