Tammy Gonzalez, Elina V Zhivov, Raji R Nagalla, Rebecca Verpile, Viviane Abreu Nunes, Marjana Tomic-Canic, Barry Resnik, Hadar Lev-Tov, Irena Pastar
{"title":"Comprehensive Approach for Microbial Isolation from Hidradenitis Suppurativa Tunnels.","authors":"Tammy Gonzalez, Elina V Zhivov, Raji R Nagalla, Rebecca Verpile, Viviane Abreu Nunes, Marjana Tomic-Canic, Barry Resnik, Hadar Lev-Tov, Irena Pastar","doi":"10.3791/67630","DOIUrl":null,"url":null,"abstract":"<p><p>Hidradenitis Suppurativa (HS) is a debilitating condition marked by painful nodules and abscesses, progressing to sinus tracts (tunnels) within the skin's dermal layers, causing significant discomfort, foul-smelling discharge, disfigurement, contractures, and scarring, which severely diminish the quality of life. HS is associated with alterations in the skin microbiome, impacting immune regulation and the skin's defense against harmful bacteria. Despite its prevalence, the contribution of the HS microbiome to disease pathology and the limited response to treatment remains largely unknown. To date, multiple 16S rRNA sequencing studies on HS tissue have only achieved genus-level granularity, identifying an increase in Gram-negative anaerobes and a decrease in skin commensals. A deeper understanding of microbial dysbiosis in individuals with HS is essential for optimizing treatment strategies. This requires a two-pronged approach to assessing the HS microbiome, including the isolation of bacterial species, which are often underutilized in translational studies focused on skin disorders. Isolating individual microorganisms from HS tissue is crucial for elucidating the role of bacteria in HS pathogenesis. Here, we highlight reproducible methods to successfully isolate anaerobic pathogens from HS tunnel tissue, providing the initial and most critical step in understanding bacterial role in HS. This method paves the way for targeted research into microbial contributions to HS and for developing more effective, personalized treatment strategies that address the complex microbial burden of this chronic condition.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 216","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jove-Journal of Visualized Experiments","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3791/67630","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Hidradenitis Suppurativa (HS) is a debilitating condition marked by painful nodules and abscesses, progressing to sinus tracts (tunnels) within the skin's dermal layers, causing significant discomfort, foul-smelling discharge, disfigurement, contractures, and scarring, which severely diminish the quality of life. HS is associated with alterations in the skin microbiome, impacting immune regulation and the skin's defense against harmful bacteria. Despite its prevalence, the contribution of the HS microbiome to disease pathology and the limited response to treatment remains largely unknown. To date, multiple 16S rRNA sequencing studies on HS tissue have only achieved genus-level granularity, identifying an increase in Gram-negative anaerobes and a decrease in skin commensals. A deeper understanding of microbial dysbiosis in individuals with HS is essential for optimizing treatment strategies. This requires a two-pronged approach to assessing the HS microbiome, including the isolation of bacterial species, which are often underutilized in translational studies focused on skin disorders. Isolating individual microorganisms from HS tissue is crucial for elucidating the role of bacteria in HS pathogenesis. Here, we highlight reproducible methods to successfully isolate anaerobic pathogens from HS tunnel tissue, providing the initial and most critical step in understanding bacterial role in HS. This method paves the way for targeted research into microbial contributions to HS and for developing more effective, personalized treatment strategies that address the complex microbial burden of this chronic condition.
期刊介绍:
JoVE, the Journal of Visualized Experiments, is the world''s first peer reviewed scientific video journal. Established in 2006, JoVE is devoted to publishing scientific research in a visual format to help researchers overcome two of the biggest challenges facing the scientific research community today; poor reproducibility and the time and labor intensive nature of learning new experimental techniques.