The Huong Chau, Naaz Bansal, Anastasia Chernykh, Rebeca Kawahara, Morten Thaysen-Andersen
{"title":"Glycomics-Guided Glycoproteomics Facilitates Comprehensive Profiling of the Glycoproteome in Complex Tumor Microenvironments.","authors":"The Huong Chau, Naaz Bansal, Anastasia Chernykh, Rebeca Kawahara, Morten Thaysen-Andersen","doi":"10.3791/67405","DOIUrl":null,"url":null,"abstract":"<p><p>Glycosylation is a common and structurally diverse protein modification that impacts a wide range of tumorigenic processes. Mass spectrometry-driven glycomics and glycoproteomics have emerged as powerful approaches to analyze liberated glycans and intact glycopeptides, respectively, offering a deeper understanding of the heterogeneous glycoproteome in the tumor microenvironment (TME). This protocol details the glycomics-guided glycoproteomics method, an integrated omics technology, which firstly employs porous graphitized carbon-LC-MS/MS-based glycomics to elucidate the glycan structures and their quantitative distribution in the glycome of tumor tissues, cell populations, or bodily fluids being investigated. This allows for a comparative glycomics analysis to identify altered glycosylation across patient groups, disease stages, or conditions, and, importantly, serves to enhance the downstream glycoproteomics analysis of the same sample(s) by creating a library of known glycan structures, thus reducing the data search time and the glycoprotein misidentification rate. Focusing on N-glycoproteome profiling, the sample preparation steps for the glycomics-guided glycoproteomics method are detailed in this protocol, and key aspects of the data collection and analysis are discussed. The glycomics-guided glycoproteomics method provides quantitative information on the glycoproteins present in the TME and their glycosylation sites, site occupancy, and site-specific glycan structures. Representative results are presented from formalin-fixed paraffin-embedded tumor tissues from colorectal cancer patients, demonstrating that the method is sensitive and compatible with tissue sections commonly found in biobanks. Glycomics-guided glycoproteomics, therefore, offers a comprehensive view into the heterogeneity and dynamics of the glycoproteome in complex TMEs, generating robust biochemical data required to better understand the glycobiology of cancers.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 216","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jove-Journal of Visualized Experiments","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3791/67405","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Glycosylation is a common and structurally diverse protein modification that impacts a wide range of tumorigenic processes. Mass spectrometry-driven glycomics and glycoproteomics have emerged as powerful approaches to analyze liberated glycans and intact glycopeptides, respectively, offering a deeper understanding of the heterogeneous glycoproteome in the tumor microenvironment (TME). This protocol details the glycomics-guided glycoproteomics method, an integrated omics technology, which firstly employs porous graphitized carbon-LC-MS/MS-based glycomics to elucidate the glycan structures and their quantitative distribution in the glycome of tumor tissues, cell populations, or bodily fluids being investigated. This allows for a comparative glycomics analysis to identify altered glycosylation across patient groups, disease stages, or conditions, and, importantly, serves to enhance the downstream glycoproteomics analysis of the same sample(s) by creating a library of known glycan structures, thus reducing the data search time and the glycoprotein misidentification rate. Focusing on N-glycoproteome profiling, the sample preparation steps for the glycomics-guided glycoproteomics method are detailed in this protocol, and key aspects of the data collection and analysis are discussed. The glycomics-guided glycoproteomics method provides quantitative information on the glycoproteins present in the TME and their glycosylation sites, site occupancy, and site-specific glycan structures. Representative results are presented from formalin-fixed paraffin-embedded tumor tissues from colorectal cancer patients, demonstrating that the method is sensitive and compatible with tissue sections commonly found in biobanks. Glycomics-guided glycoproteomics, therefore, offers a comprehensive view into the heterogeneity and dynamics of the glycoproteome in complex TMEs, generating robust biochemical data required to better understand the glycobiology of cancers.
期刊介绍:
JoVE, the Journal of Visualized Experiments, is the world''s first peer reviewed scientific video journal. Established in 2006, JoVE is devoted to publishing scientific research in a visual format to help researchers overcome two of the biggest challenges facing the scientific research community today; poor reproducibility and the time and labor intensive nature of learning new experimental techniques.