A Data-Driven Approach to Quantifying Immune States in Sepsis.

IF 1.2 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES
Shan Li, Tengxiao Liang, Fangliang Xing, Shangshang Jiang
{"title":"A Data-Driven Approach to Quantifying Immune States in Sepsis.","authors":"Shan Li, Tengxiao Liang, Fangliang Xing, Shangshang Jiang","doi":"10.3791/68074","DOIUrl":null,"url":null,"abstract":"<p><p>In sepsis, understanding the interplay among white blood cells, lymphocytes, and neutrophils is crucial for assessing the immune condition and optimizing treatment strategies. Blood samples were collected from 512 patients diagnosed with sepsis and 205 healthy controls, totaling 717 samples. Data visualization analysis and three-dimensional numerical fitting were performed to establish a mathematical model describing the relationships among white blood cells, lymphocytes, and neutrophils. Self-organizing feature map (SOFM) was employed to automatically cluster the sepsis sample data in the three-dimensional space represented by the model, yielding different immune states. Analysis revealed that white blood cell, lymphocyte, and neutrophil counts are constrained within a three-dimensional plane, as described by the equation: WBC = 1.098 × Neutrophils + 1.046 × Lymphocytes + 0.1645, yielding a prediction error (RMSE) of 1%. This equation is universally applicable to all samples despite differences in their spatial distributions. SOFM clustering identified nine distinct immune states within the sepsis patient population, representing different levels of immune status, oscillation periods, and recovery stages. The proposed mathematical model, represented by the equation above, reveals a basic constraint boundary on the immune cell populations in both sepsis patients and healthy controls. Furthermore, the SOFM clustering approach provides a comprehensive overview of the distinct immune states observed within this constraint boundary in sepsis patients. This study lays the foundation for future work on quantifying and categorizing the immune condition in sepsis, which may ultimately contribute to the development of more objective diagnostic and treatment strategies.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 216","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jove-Journal of Visualized Experiments","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3791/68074","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In sepsis, understanding the interplay among white blood cells, lymphocytes, and neutrophils is crucial for assessing the immune condition and optimizing treatment strategies. Blood samples were collected from 512 patients diagnosed with sepsis and 205 healthy controls, totaling 717 samples. Data visualization analysis and three-dimensional numerical fitting were performed to establish a mathematical model describing the relationships among white blood cells, lymphocytes, and neutrophils. Self-organizing feature map (SOFM) was employed to automatically cluster the sepsis sample data in the three-dimensional space represented by the model, yielding different immune states. Analysis revealed that white blood cell, lymphocyte, and neutrophil counts are constrained within a three-dimensional plane, as described by the equation: WBC = 1.098 × Neutrophils + 1.046 × Lymphocytes + 0.1645, yielding a prediction error (RMSE) of 1%. This equation is universally applicable to all samples despite differences in their spatial distributions. SOFM clustering identified nine distinct immune states within the sepsis patient population, representing different levels of immune status, oscillation periods, and recovery stages. The proposed mathematical model, represented by the equation above, reveals a basic constraint boundary on the immune cell populations in both sepsis patients and healthy controls. Furthermore, the SOFM clustering approach provides a comprehensive overview of the distinct immune states observed within this constraint boundary in sepsis patients. This study lays the foundation for future work on quantifying and categorizing the immune condition in sepsis, which may ultimately contribute to the development of more objective diagnostic and treatment strategies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Jove-Journal of Visualized Experiments
Jove-Journal of Visualized Experiments MULTIDISCIPLINARY SCIENCES-
CiteScore
2.10
自引率
0.00%
发文量
992
期刊介绍: JoVE, the Journal of Visualized Experiments, is the world''s first peer reviewed scientific video journal. Established in 2006, JoVE is devoted to publishing scientific research in a visual format to help researchers overcome two of the biggest challenges facing the scientific research community today; poor reproducibility and the time and labor intensive nature of learning new experimental techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信