{"title":"High-Accuracy Intermittent Strabismus Screening via Wearable Eye-Tracking and AI-Enhanced Ocular Feature Analysis.","authors":"Zihe Zhao, Hongbei Meng, Shangru Li, Shengbo Wang, Jiaqi Wang, Shuo Gao","doi":"10.3390/bios15020110","DOIUrl":null,"url":null,"abstract":"<p><p>An effective and highly accurate strabismus screening method is expected to identify potential patients and provide timely treatment to prevent further deterioration, such as amblyopia and even permanent vision loss. To satisfy this need, this work showcases a novel strabismus screening method based on a wearable eye-tracking device combined with an artificial intelligence (AI) algorithm. To identify the minor and occasional inconsistencies in strabismus patients during the binocular coordination process, which are usually seen in early-stage patients and rarely recognized in current studies, the system captures temporally and spatially continuous high-definition infrared images of the eye during wide-angle continuous motion, and is effective in inducing intermittent strabismus. Based on the collected eye motion information, 16 features of the oculomotor process with strong physiological interpretations, which help biomedical staff understand and evaluate results generated later, are calculated through the introduction of pupil-canthus vectors. These features can be normalized, and reflect individual differences. After these features are processed by the random forest (RF) algorithm, this method experimentally yields 97.1% accuracy in strabismus detection in 70 people under diverse indoor testing conditions, validating the high accuracy and robustness of the method, and implying that the method has strong potential to support widespread and highly accurate strabismus screening.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 2","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11852461/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios15020110","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
An effective and highly accurate strabismus screening method is expected to identify potential patients and provide timely treatment to prevent further deterioration, such as amblyopia and even permanent vision loss. To satisfy this need, this work showcases a novel strabismus screening method based on a wearable eye-tracking device combined with an artificial intelligence (AI) algorithm. To identify the minor and occasional inconsistencies in strabismus patients during the binocular coordination process, which are usually seen in early-stage patients and rarely recognized in current studies, the system captures temporally and spatially continuous high-definition infrared images of the eye during wide-angle continuous motion, and is effective in inducing intermittent strabismus. Based on the collected eye motion information, 16 features of the oculomotor process with strong physiological interpretations, which help biomedical staff understand and evaluate results generated later, are calculated through the introduction of pupil-canthus vectors. These features can be normalized, and reflect individual differences. After these features are processed by the random forest (RF) algorithm, this method experimentally yields 97.1% accuracy in strabismus detection in 70 people under diverse indoor testing conditions, validating the high accuracy and robustness of the method, and implying that the method has strong potential to support widespread and highly accurate strabismus screening.
Biosensors-BaselBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍:
Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.