Allison A Dilliott, Maria C Costanzo, Sara Bandres-Ciga, Cornelis Blauwendraat, Bradford Casey, Quy Hoang, Hirotaka Iwaki, Dongkeun Jang, Jonggeol Jeffrey Kim, Hampton L Leonard, Kristin S Levine, Mary Makarious, Trang T Nguyen, Guy A Rouleau, Andrew B Singleton, Patrick Smadbeck, J Solle, Dan Vitale, Mike Nalls, Jason Flannick, Noël P Burtt, Sali M K Farhan
{"title":"The Neurodegenerative Disease Knowledge Portal: Propelling Discovery Through the Sharing of Neurodegenerative Disease Genomic Resources.","authors":"Allison A Dilliott, Maria C Costanzo, Sara Bandres-Ciga, Cornelis Blauwendraat, Bradford Casey, Quy Hoang, Hirotaka Iwaki, Dongkeun Jang, Jonggeol Jeffrey Kim, Hampton L Leonard, Kristin S Levine, Mary Makarious, Trang T Nguyen, Guy A Rouleau, Andrew B Singleton, Patrick Smadbeck, J Solle, Dan Vitale, Mike Nalls, Jason Flannick, Noël P Burtt, Sali M K Farhan","doi":"10.1212/NXG.0000000000200246","DOIUrl":null,"url":null,"abstract":"<p><p>Although large-scale genetic association studies have proven useful for the delineation of neurodegenerative disease processes, we still lack a full understanding of the pathologic mechanisms of these diseases, resulting in few appropriate treatment options and diagnostic challenges. To mitigate these gaps, the Neurodegenerative Disease Knowledge Portal (NDKP) was created as an open-science initiative with the aim to aggregate, enable analysis, and display all available genomic datasets of neurodegenerative disease, while protecting the integrity and confidentiality of the underlying datasets. The portal contains 218 genomic datasets, including genotyping and sequencing studies, of individuals across 10 different phenotypic groups, including neurologic conditions such as Alzheimer disease, amyotrophic lateral sclerosis, Lewy body dementia, and Parkinson disease. In addition to securely hosting large genomic datasets, the NDKP provides accessible workflows and tools to effectively use the datasets and assist in the facilitation of customized genomic analyses. Here, we summarize the genomic datasets currently included within the portal, the bioinformatics processing of the datasets, and the variety of phenotypes captured. We also present example use cases of the various user interfaces and integrated analytic tools to demonstrate their extensive utility in enabling the extraction of high-quality results at the source, for both genomics experts and those in other disciplines. Overall, the NDKP promotes open science and collaboration, maximizing the potential for discovery from the large-scale datasets researchers and consortia are expending immense resources to produce and resulting in reproducible conclusions to improve diagnostic and therapeutic care for patients with neurodegenerative disease.</p>","PeriodicalId":48613,"journal":{"name":"Neurology-Genetics","volume":"11 2","pages":"e200246"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11849525/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurology-Genetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1212/NXG.0000000000200246","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Although large-scale genetic association studies have proven useful for the delineation of neurodegenerative disease processes, we still lack a full understanding of the pathologic mechanisms of these diseases, resulting in few appropriate treatment options and diagnostic challenges. To mitigate these gaps, the Neurodegenerative Disease Knowledge Portal (NDKP) was created as an open-science initiative with the aim to aggregate, enable analysis, and display all available genomic datasets of neurodegenerative disease, while protecting the integrity and confidentiality of the underlying datasets. The portal contains 218 genomic datasets, including genotyping and sequencing studies, of individuals across 10 different phenotypic groups, including neurologic conditions such as Alzheimer disease, amyotrophic lateral sclerosis, Lewy body dementia, and Parkinson disease. In addition to securely hosting large genomic datasets, the NDKP provides accessible workflows and tools to effectively use the datasets and assist in the facilitation of customized genomic analyses. Here, we summarize the genomic datasets currently included within the portal, the bioinformatics processing of the datasets, and the variety of phenotypes captured. We also present example use cases of the various user interfaces and integrated analytic tools to demonstrate their extensive utility in enabling the extraction of high-quality results at the source, for both genomics experts and those in other disciplines. Overall, the NDKP promotes open science and collaboration, maximizing the potential for discovery from the large-scale datasets researchers and consortia are expending immense resources to produce and resulting in reproducible conclusions to improve diagnostic and therapeutic care for patients with neurodegenerative disease.
期刊介绍:
Neurology: Genetics is an online open access journal publishing peer-reviewed reports in the field of neurogenetics. Original articles in all areas of neurogenetics will be published including rare and common genetic variation, genotype-phenotype correlations, outlier phenotypes as a result of mutations in known disease-genes, and genetic variations with a putative link to diseases. This will include studies reporting on genetic disease risk and pharmacogenomics. In addition, Neurology: Genetics will publish results of gene-based clinical trials (viral, ASO, etc.). Genetically engineered model systems are not a primary focus of Neurology: Genetics, but studies using model systems for treatment trials are welcome, including well-powered studies reporting negative results.