Kee Young Hwang, Dakota Brown, Supun B Attanayake, Dan Luu, Minh Dang Nguyen, T Randall Lee, Manh-Huong Phan
{"title":"Signal Differentiation of Moving Magnetic Nanoparticles for Enhanced Biodetection and Diagnostics.","authors":"Kee Young Hwang, Dakota Brown, Supun B Attanayake, Dan Luu, Minh Dang Nguyen, T Randall Lee, Manh-Huong Phan","doi":"10.3390/bios15020116","DOIUrl":null,"url":null,"abstract":"<p><p>Magnetic nanoparticles are extensively utilized as markers/signal labelling in various biomedical applications. Detecting and distinguishing magnetic signals from similarly sized moving magnetic nanoparticles in microfluidic systems is crucial yet challenging for biosensing. In this study, we have developed an original method to detect and differentiate magnetic signals from moving superparamagnetic (SPM) and ferrimagnetic (FM) nanoparticles of comparable sizes. Our approach utilizes a highly sensitive magnetic-coil-based sensor that harnesses the combined effects of giant magnetoimpedance (GMI) and an LC-resonance circuit, offering performance superior to that of conventional GMI sensors. Iron oxide nanoparticles, which have similar particle sizes but differing coercivities (zero for SPM and non-zero for FM) or similar zero coercivities but differing particle sizes, flow through the magnetic coil at controlled velocities. Their distinct effects are analyzed through changes in the complex impedance of the sensing system. Our findings provide a unique pathway for utilizing SPM and FM nanoparticles as innovative magnetic markers to identify specific biological entities, thereby expanding their potential applications.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 2","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11852982/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios15020116","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Magnetic nanoparticles are extensively utilized as markers/signal labelling in various biomedical applications. Detecting and distinguishing magnetic signals from similarly sized moving magnetic nanoparticles in microfluidic systems is crucial yet challenging for biosensing. In this study, we have developed an original method to detect and differentiate magnetic signals from moving superparamagnetic (SPM) and ferrimagnetic (FM) nanoparticles of comparable sizes. Our approach utilizes a highly sensitive magnetic-coil-based sensor that harnesses the combined effects of giant magnetoimpedance (GMI) and an LC-resonance circuit, offering performance superior to that of conventional GMI sensors. Iron oxide nanoparticles, which have similar particle sizes but differing coercivities (zero for SPM and non-zero for FM) or similar zero coercivities but differing particle sizes, flow through the magnetic coil at controlled velocities. Their distinct effects are analyzed through changes in the complex impedance of the sensing system. Our findings provide a unique pathway for utilizing SPM and FM nanoparticles as innovative magnetic markers to identify specific biological entities, thereby expanding their potential applications.
Biosensors-BaselBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍:
Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.