{"title":"Visualizing Intracellular Sialylation with Click Chemistry and Expansion Microscopy.","authors":"Yannick Masson, Aude Sivery, Corentin Spriet, Anthony Treizebre, Christophe Biot, Cedric Lion","doi":"10.3791/67479","DOIUrl":null,"url":null,"abstract":"<p><p>Metabolic labeling techniques allow the incorporation of bioorthogonal reporters into glycans, enabling the targeted bioconjugation of molecular dyes within cells through click and bioorthogonal chemistry. Metabolic oligosaccharide engineering (MOE) has attracted considerable interest due to the essential role of glycosylation in numerous biological processes that involve molecular recognition and its impact on pathologies ranging from cancer to genetic disorders to viral and bacterial infections. Although MOE is better known for the detection of cell surface glycoconjugates, it is also a very important methodology for the study of intracellular glycans in physiological and pathological contexts. Such studies greatly benefit from high spatial resolution. However, super-resolution microscopy is not readily available in most laboratories and poses challenges for daily implementation. Expansion microscopy is a recent alternative that enhances the resolution of microscopy by physically enlarging biological specimens labeled with fluorescent markers. By embedding the sample in a swellable gel and causing it to expand isotropically through chemical treatment, subcellular structures can be visualized with enhanced precision and resolution without the need for super-resolution techniques. In this work, we illustrate the capacity of expansion microscopy to visualize intracellular sialylated glycans through the combined use of MOE and click chemistry. Specifically, we propose a procedure for bioorthogonal labeling and expansion microscopy that employs a reporter targeting sialylation, which may be associated with immunofluorescence for co-localization studies. This protocol enables localization studies of sialoconjugate biosynthesis, intracellular trafficking, and recycling.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 216","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jove-Journal of Visualized Experiments","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3791/67479","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Metabolic labeling techniques allow the incorporation of bioorthogonal reporters into glycans, enabling the targeted bioconjugation of molecular dyes within cells through click and bioorthogonal chemistry. Metabolic oligosaccharide engineering (MOE) has attracted considerable interest due to the essential role of glycosylation in numerous biological processes that involve molecular recognition and its impact on pathologies ranging from cancer to genetic disorders to viral and bacterial infections. Although MOE is better known for the detection of cell surface glycoconjugates, it is also a very important methodology for the study of intracellular glycans in physiological and pathological contexts. Such studies greatly benefit from high spatial resolution. However, super-resolution microscopy is not readily available in most laboratories and poses challenges for daily implementation. Expansion microscopy is a recent alternative that enhances the resolution of microscopy by physically enlarging biological specimens labeled with fluorescent markers. By embedding the sample in a swellable gel and causing it to expand isotropically through chemical treatment, subcellular structures can be visualized with enhanced precision and resolution without the need for super-resolution techniques. In this work, we illustrate the capacity of expansion microscopy to visualize intracellular sialylated glycans through the combined use of MOE and click chemistry. Specifically, we propose a procedure for bioorthogonal labeling and expansion microscopy that employs a reporter targeting sialylation, which may be associated with immunofluorescence for co-localization studies. This protocol enables localization studies of sialoconjugate biosynthesis, intracellular trafficking, and recycling.
期刊介绍:
JoVE, the Journal of Visualized Experiments, is the world''s first peer reviewed scientific video journal. Established in 2006, JoVE is devoted to publishing scientific research in a visual format to help researchers overcome two of the biggest challenges facing the scientific research community today; poor reproducibility and the time and labor intensive nature of learning new experimental techniques.