Francesco Chiara, Sarah Allegra, Elisa Arrigo, Daniela Di Grazia, Francesco Maximillian Anthony Shelton Agar, Raluca Elena Abalai, Sara Gilardi, Silvia De Francia, Daniele Mancardi
{"title":"New Standardized Procedure to Extract Glyphosate and Aminomethylphosphonic Acid from Different Matrices: A Kit for HPLC-UV Detection.","authors":"Francesco Chiara, Sarah Allegra, Elisa Arrigo, Daniela Di Grazia, Francesco Maximillian Anthony Shelton Agar, Raluca Elena Abalai, Sara Gilardi, Silvia De Francia, Daniele Mancardi","doi":"10.3390/jox15010023","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Glyphosate has been extensively used as herbicide since the early 1970s. The daily exposure limit is set at 0.3 mg/kg bw/d in Europe and 1.75 mg/kg bw/d in the USA. Among its derivatives, aminomethylphosphonic acid is the most stable and abundant. Understanding their biological effects then requires reliable methods for quantification in biological samples.</p><p><strong>Methods: </strong>We developed and validated a fast, low-cost, and reliable chromatographic method for determining glyphosate and aminomethylphosphonic acid concentrations. The validation included following parameters: specificity, selectivity, matrix effect, accuracy, precision, calibration performance, limit of quantification, recovery, and stability. Sample extraction employed an anion exchange resin with elution using hydrochloric acid 50.0 mmol/L. For HPLC analysis, analytes were derivatized, separated on a C18 column with a mobile phase of phosphate buffer (0.20 mol/L, pH 3.0) and acetonitrile (85:15), and detected at 240 nm.</p><p><strong>Results: </strong>The method demonstrated high reliability and reproducibility across various matrices. Its performance met all validation criteria, confirming its suitability for quantifying glyphosate and aminomethylphosphonic acid in different biological and experimental setups.</p><p><strong>Conclusions: </strong>This method can offer a practical resource for applications in experimental research, medical diagnostics, quality control, and food safety.</p>","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"15 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11856786/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Xenobiotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jox15010023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Glyphosate has been extensively used as herbicide since the early 1970s. The daily exposure limit is set at 0.3 mg/kg bw/d in Europe and 1.75 mg/kg bw/d in the USA. Among its derivatives, aminomethylphosphonic acid is the most stable and abundant. Understanding their biological effects then requires reliable methods for quantification in biological samples.
Methods: We developed and validated a fast, low-cost, and reliable chromatographic method for determining glyphosate and aminomethylphosphonic acid concentrations. The validation included following parameters: specificity, selectivity, matrix effect, accuracy, precision, calibration performance, limit of quantification, recovery, and stability. Sample extraction employed an anion exchange resin with elution using hydrochloric acid 50.0 mmol/L. For HPLC analysis, analytes were derivatized, separated on a C18 column with a mobile phase of phosphate buffer (0.20 mol/L, pH 3.0) and acetonitrile (85:15), and detected at 240 nm.
Results: The method demonstrated high reliability and reproducibility across various matrices. Its performance met all validation criteria, confirming its suitability for quantifying glyphosate and aminomethylphosphonic acid in different biological and experimental setups.
Conclusions: This method can offer a practical resource for applications in experimental research, medical diagnostics, quality control, and food safety.
期刊介绍:
The Journal of Xenobiotics publishes original studies concerning the beneficial (pharmacology) and detrimental effects (toxicology) of xenobiotics in all organisms. A xenobiotic (“stranger to life”) is defined as a chemical that is not usually found at significant concentrations or expected to reside for long periods in organisms. In addition to man-made chemicals, natural products could also be of interest if they have potent biological properties, special medicinal properties or that a given organism is at risk of exposure in the environment. Topics dealing with abiotic- and biotic-based transformations in various media (xenobiochemistry) and environmental toxicology are also of interest. Areas of interests include the identification of key physical and chemical properties of molecules that predict biological effects and persistence in the environment; the molecular mode of action of xenobiotics; biochemical and physiological interactions leading to change in organism health; pathophysiological interactions of natural and synthetic chemicals; development of biochemical indicators including new “-omics” approaches to identify biomarkers of exposure or effects for xenobiotics.