Anna Klimowska, Joanna Jurewicz, Michał Radwan, Paweł Radwan, Paweł Pol, Bartosz Wielgomas
{"title":"Distribution of Environmental Phenols into Follicular Fluid and Urine of Women Attending Infertility Clinic.","authors":"Anna Klimowska, Joanna Jurewicz, Michał Radwan, Paweł Radwan, Paweł Pol, Bartosz Wielgomas","doi":"10.3390/jox15010017","DOIUrl":null,"url":null,"abstract":"<p><p>Infertility and environmental pollution are two globally prevalent and related issues. To explore women's reproductive health, the composition of follicular fluid (FF) has been studied and it was found that changes to its composition, including the presence of exogenous chemicals, can adversely affect the fertilization process. Two groups of women (idiopathic infertility and controls) who were patients at a fertility clinic were recruited for this study. Samples of urine and FF were gathered from each participant to determine the concentration of 14 common phenols (four parabens, six bisphenols, two benzophenones, and two naphthols). Associations between phenol concentrations (free and total) in both matrices were described using Spearman's correlation coefficient and were compared between two groups by the Mann-Whitney U test. Eight phenols were quantified in more than 50% of the urine samples, while only three parabens were quantified in hydrolyzed FF samples, and only methylparaben was quantified in non-hydrolyzed FF samples. Conjugates were the predominant form in FF samples. However, a significant correlation of 0.533 (<i>p</i> < 0.0001) was observed between free and total methylparaben concentrations in FF. Differences in concentrations between cases and controls in both matrices were not statistically significant, except for benzophenone-3 in urine, with a higher median observed in the control group (<i>p</i> = 0.04). The total paraben concentrations in urine and FF samples were rather weakly correlated (r = 0.232-0.473), implying that urine concentrations may not be appropriate for predicting their concentration in FF.</p>","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"15 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11856404/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Xenobiotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jox15010017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Infertility and environmental pollution are two globally prevalent and related issues. To explore women's reproductive health, the composition of follicular fluid (FF) has been studied and it was found that changes to its composition, including the presence of exogenous chemicals, can adversely affect the fertilization process. Two groups of women (idiopathic infertility and controls) who were patients at a fertility clinic were recruited for this study. Samples of urine and FF were gathered from each participant to determine the concentration of 14 common phenols (four parabens, six bisphenols, two benzophenones, and two naphthols). Associations between phenol concentrations (free and total) in both matrices were described using Spearman's correlation coefficient and were compared between two groups by the Mann-Whitney U test. Eight phenols were quantified in more than 50% of the urine samples, while only three parabens were quantified in hydrolyzed FF samples, and only methylparaben was quantified in non-hydrolyzed FF samples. Conjugates were the predominant form in FF samples. However, a significant correlation of 0.533 (p < 0.0001) was observed between free and total methylparaben concentrations in FF. Differences in concentrations between cases and controls in both matrices were not statistically significant, except for benzophenone-3 in urine, with a higher median observed in the control group (p = 0.04). The total paraben concentrations in urine and FF samples were rather weakly correlated (r = 0.232-0.473), implying that urine concentrations may not be appropriate for predicting their concentration in FF.
期刊介绍:
The Journal of Xenobiotics publishes original studies concerning the beneficial (pharmacology) and detrimental effects (toxicology) of xenobiotics in all organisms. A xenobiotic (“stranger to life”) is defined as a chemical that is not usually found at significant concentrations or expected to reside for long periods in organisms. In addition to man-made chemicals, natural products could also be of interest if they have potent biological properties, special medicinal properties or that a given organism is at risk of exposure in the environment. Topics dealing with abiotic- and biotic-based transformations in various media (xenobiochemistry) and environmental toxicology are also of interest. Areas of interests include the identification of key physical and chemical properties of molecules that predict biological effects and persistence in the environment; the molecular mode of action of xenobiotics; biochemical and physiological interactions leading to change in organism health; pathophysiological interactions of natural and synthetic chemicals; development of biochemical indicators including new “-omics” approaches to identify biomarkers of exposure or effects for xenobiotics.