{"title":"<i>Apis mellifera</i> as a Model Species to Evaluate Toxicological Effects of Fungicides Used in Vineyard Agroecosystems.","authors":"Tommaso Campani, Ginevra Manieri, Ilaria Caliani, Agata Di Noi, Silvia Casini","doi":"10.3390/jox15010018","DOIUrl":null,"url":null,"abstract":"<p><p>Agroecosystems provide habitats, food, and water for many pollinators and insects, but they are also heavily exposed to threats from the widespread use of pesticides and fertilizers. Managed honeybees and wild bees encounter pesticides in vineyards by collecting morning dew from vine leaves and accessing sugars from grapes, particularly during dry periods. This study assessed the toxicological effects of the commercial fungicide formulations Fantic FNCWG<sup>®</sup> and Ramedit combi<sup>®</sup>, both individually and in combination, on honeybees. Using a multi-biomarker approach, we evaluated neurotoxicity, metabolic disturbances, phase II detoxification processes, and immune system function. Our findings revealed that commercial fungicide mixtures with multiple active ingredients affect bees differently than single active compounds. Biomarker responses highlighted how these complex mixtures disrupt various enzymatic pathways; including immune function; altering critical enzyme kinetics involved in detoxification and potentially impairing essential bee functions. This study emphasizes the need for more comprehensive research into the sublethal effects of commercial pesticides, particularly those used in vineyards, which are understudied compared to pesticides used in orchards.</p>","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"15 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11856139/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Xenobiotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jox15010018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Agroecosystems provide habitats, food, and water for many pollinators and insects, but they are also heavily exposed to threats from the widespread use of pesticides and fertilizers. Managed honeybees and wild bees encounter pesticides in vineyards by collecting morning dew from vine leaves and accessing sugars from grapes, particularly during dry periods. This study assessed the toxicological effects of the commercial fungicide formulations Fantic FNCWG® and Ramedit combi®, both individually and in combination, on honeybees. Using a multi-biomarker approach, we evaluated neurotoxicity, metabolic disturbances, phase II detoxification processes, and immune system function. Our findings revealed that commercial fungicide mixtures with multiple active ingredients affect bees differently than single active compounds. Biomarker responses highlighted how these complex mixtures disrupt various enzymatic pathways; including immune function; altering critical enzyme kinetics involved in detoxification and potentially impairing essential bee functions. This study emphasizes the need for more comprehensive research into the sublethal effects of commercial pesticides, particularly those used in vineyards, which are understudied compared to pesticides used in orchards.
期刊介绍:
The Journal of Xenobiotics publishes original studies concerning the beneficial (pharmacology) and detrimental effects (toxicology) of xenobiotics in all organisms. A xenobiotic (“stranger to life”) is defined as a chemical that is not usually found at significant concentrations or expected to reside for long periods in organisms. In addition to man-made chemicals, natural products could also be of interest if they have potent biological properties, special medicinal properties or that a given organism is at risk of exposure in the environment. Topics dealing with abiotic- and biotic-based transformations in various media (xenobiochemistry) and environmental toxicology are also of interest. Areas of interests include the identification of key physical and chemical properties of molecules that predict biological effects and persistence in the environment; the molecular mode of action of xenobiotics; biochemical and physiological interactions leading to change in organism health; pathophysiological interactions of natural and synthetic chemicals; development of biochemical indicators including new “-omics” approaches to identify biomarkers of exposure or effects for xenobiotics.