Zahra Mousaviyon, Hamid Reza Pourkhabbaz, Mahdi Banaee, Saeid Khodadoust, Ali Reza Pourkhabbaz, Abha Trivedi, Caterina Faggio, Cristiana Roberta Multisanti
{"title":"Toxicity of Crude Oil Wastewater Treated with Nano-ZnO as a Photocatalyst on <i>Labeo rohita</i>: A Biochemical and Physiological Investigation.","authors":"Zahra Mousaviyon, Hamid Reza Pourkhabbaz, Mahdi Banaee, Saeid Khodadoust, Ali Reza Pourkhabbaz, Abha Trivedi, Caterina Faggio, Cristiana Roberta Multisanti","doi":"10.3390/jox15010025","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to evaluate the effects of the water-soluble fraction of crude oil (WSFO) on Indian carp (<i>Labeo rohita</i>) with and without treatment with zinc oxide nanoparticles (Nano-ZnO). A total of 225 fish were randomly assigned to five groups in triplicate for 21 days. Group I served as the control group. Groups II and III were exposed to 0.5% and 1% untreated WSFO, respectively. Groups IV and V received 5% and 10% WSFO treated with Nano-ZnO, while Groups VI and VII received 5% and 10% WSFO treated without Nano-ZnO. No blood samples were obtained from fish exposed to untreated WSFO, due to increased hemolysis. Exposure to treated WSFO increased creatine phosphokinase, alkaline phosphatase, aspartate aminotransferase, lactate dehydrogenase, and gamma-glutamyl transferase activities, while alanine aminotransferase activity decreased. Although a significant decrease was observed in total protein, globulin, and triglyceride levels, albumin and cholesterol increased. Thiol groups and glutathione peroxidase activity significantly decreased, while superoxide dismutase, catalase, total antioxidant capacity, and malondialdehyde levels increased. The findings showed that exposure to WSFO, whether treated or untreated, induces significant biochemical and oxidative stress responses in <i>Labeo rohita</i>. Although WSFO treated with Nano-ZnO mitigated hemolysis, it was unable to prevent enzyme and antioxidant imbalances, indicating persistent physiological stress.</p>","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"15 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11856847/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Xenobiotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jox15010025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to evaluate the effects of the water-soluble fraction of crude oil (WSFO) on Indian carp (Labeo rohita) with and without treatment with zinc oxide nanoparticles (Nano-ZnO). A total of 225 fish were randomly assigned to five groups in triplicate for 21 days. Group I served as the control group. Groups II and III were exposed to 0.5% and 1% untreated WSFO, respectively. Groups IV and V received 5% and 10% WSFO treated with Nano-ZnO, while Groups VI and VII received 5% and 10% WSFO treated without Nano-ZnO. No blood samples were obtained from fish exposed to untreated WSFO, due to increased hemolysis. Exposure to treated WSFO increased creatine phosphokinase, alkaline phosphatase, aspartate aminotransferase, lactate dehydrogenase, and gamma-glutamyl transferase activities, while alanine aminotransferase activity decreased. Although a significant decrease was observed in total protein, globulin, and triglyceride levels, albumin and cholesterol increased. Thiol groups and glutathione peroxidase activity significantly decreased, while superoxide dismutase, catalase, total antioxidant capacity, and malondialdehyde levels increased. The findings showed that exposure to WSFO, whether treated or untreated, induces significant biochemical and oxidative stress responses in Labeo rohita. Although WSFO treated with Nano-ZnO mitigated hemolysis, it was unable to prevent enzyme and antioxidant imbalances, indicating persistent physiological stress.
期刊介绍:
The Journal of Xenobiotics publishes original studies concerning the beneficial (pharmacology) and detrimental effects (toxicology) of xenobiotics in all organisms. A xenobiotic (“stranger to life”) is defined as a chemical that is not usually found at significant concentrations or expected to reside for long periods in organisms. In addition to man-made chemicals, natural products could also be of interest if they have potent biological properties, special medicinal properties or that a given organism is at risk of exposure in the environment. Topics dealing with abiotic- and biotic-based transformations in various media (xenobiochemistry) and environmental toxicology are also of interest. Areas of interests include the identification of key physical and chemical properties of molecules that predict biological effects and persistence in the environment; the molecular mode of action of xenobiotics; biochemical and physiological interactions leading to change in organism health; pathophysiological interactions of natural and synthetic chemicals; development of biochemical indicators including new “-omics” approaches to identify biomarkers of exposure or effects for xenobiotics.