{"title":"The Isolation and Characterization of Low- and Normal- Density Neutrophils from Whole Blood.","authors":"Anjali S Yennemadi, Joseph Keane, Gina Leisching","doi":"10.3791/67805","DOIUrl":null,"url":null,"abstract":"<p><p>Emerging research shows that the circulating neutrophil population in humans consists of diverse subtypes and should not be studied as a single population, as has been done historically. In particular, low-density and normal-density neutrophils (LDNs, NDNs) have been shown to have functionally and metabolically distinct profiles, a factor that must be considered when publishing neutrophil research. Here, we present a modified method for the untouched isolation and separation of LDNs and NDNs from whole blood. The density gradient medium (1.135 g/mL) is combined at 9:10 with 10x PBS. Specific density gradients of 55%, 70%, and 81% are subsequently made by combining the 100% density gradient medium with 1x phosphate-buffered saline (PBS). Neutrophils isolated from 12 mL of peripheral whole blood obtained from consented donors using a negative selection-based magnetic isolation kit are resuspended in the 55% fraction. A volume of 3 mL of the 81% and 70% fractions is layered into a 15 mL tube, followed by the 55% fraction containing total neutrophils. The density gradients are then centrifuged at 720 x g for 30 min. Two distinct bands are obtained at the 55%/70% interface (LDNs) and 70%/81% interface (NDNs). The cells are carefully pipetted into separate tubes and washed using PBS. The purity of the isolated fractions is determined using flow cytometry. Both LDNs and NDNs were defined as CD14lo CD15+ SSChi by flow cytometry. Isolation purity was calculated at ≥93% of viable cells for both types. This method provides a reliable and efficient approach for separating LDN and NDNs from peripheral blood, ensuring high purity and viability of the isolated cells. Enhancing the precision of neutrophil isolation facilitates more accurate downstream analyses of these distinct neutrophil subpopulations. These are critical for advancing our understanding of neutrophil heterogeneity and its implications in various physiological and pathological contexts.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 216","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jove-Journal of Visualized Experiments","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3791/67805","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Emerging research shows that the circulating neutrophil population in humans consists of diverse subtypes and should not be studied as a single population, as has been done historically. In particular, low-density and normal-density neutrophils (LDNs, NDNs) have been shown to have functionally and metabolically distinct profiles, a factor that must be considered when publishing neutrophil research. Here, we present a modified method for the untouched isolation and separation of LDNs and NDNs from whole blood. The density gradient medium (1.135 g/mL) is combined at 9:10 with 10x PBS. Specific density gradients of 55%, 70%, and 81% are subsequently made by combining the 100% density gradient medium with 1x phosphate-buffered saline (PBS). Neutrophils isolated from 12 mL of peripheral whole blood obtained from consented donors using a negative selection-based magnetic isolation kit are resuspended in the 55% fraction. A volume of 3 mL of the 81% and 70% fractions is layered into a 15 mL tube, followed by the 55% fraction containing total neutrophils. The density gradients are then centrifuged at 720 x g for 30 min. Two distinct bands are obtained at the 55%/70% interface (LDNs) and 70%/81% interface (NDNs). The cells are carefully pipetted into separate tubes and washed using PBS. The purity of the isolated fractions is determined using flow cytometry. Both LDNs and NDNs were defined as CD14lo CD15+ SSChi by flow cytometry. Isolation purity was calculated at ≥93% of viable cells for both types. This method provides a reliable and efficient approach for separating LDN and NDNs from peripheral blood, ensuring high purity and viability of the isolated cells. Enhancing the precision of neutrophil isolation facilitates more accurate downstream analyses of these distinct neutrophil subpopulations. These are critical for advancing our understanding of neutrophil heterogeneity and its implications in various physiological and pathological contexts.
期刊介绍:
JoVE, the Journal of Visualized Experiments, is the world''s first peer reviewed scientific video journal. Established in 2006, JoVE is devoted to publishing scientific research in a visual format to help researchers overcome two of the biggest challenges facing the scientific research community today; poor reproducibility and the time and labor intensive nature of learning new experimental techniques.