Air Pollution Exposure and Gestational Diabetes Mellitus Risk: A Retrospective Case-Control Study with Multi-Pollutant Analysis in Wuhan, Hubei Province.
Mengyang Dai, Jianfeng Liu, Min Hu, Feng Zhang, Yanjun Wang, Fangfang Dai, Rui Qu, Zhixiang Fang, Jing Yang
{"title":"Air Pollution Exposure and Gestational Diabetes Mellitus Risk: A Retrospective Case-Control Study with Multi-Pollutant Analysis in Wuhan, Hubei Province.","authors":"Mengyang Dai, Jianfeng Liu, Min Hu, Feng Zhang, Yanjun Wang, Fangfang Dai, Rui Qu, Zhixiang Fang, Jing Yang","doi":"10.3390/toxics13020141","DOIUrl":null,"url":null,"abstract":"<p><p>Ambient air pollution has been associated with gestational diabetes mellitus (GDM); however, evidence regarding trimester-specific effects from China remains limited. This case-control study study analyzed data from pregnant women who delivered in Wuhan, China, between 2017 and 2022 (164 GDM cases and 731 controls), integrating geographic information, air quality measurements, and maternal characteristics. Using Inverse Distance Weighting interpolation and Generalized Linear Mixed Models (GLMM), we assessed associations between air pollutant exposure and GDM across different gestational periods. Results indicated that NO<sub>2</sub> demonstrated the strongest association with GDM compared to other pollutants. Specifically, increased NO<sub>2</sub> exposure was consistently associated with higher GDM risk throughout pregnancy. PM<sub>2.5</sub> exposure showed significant associations during early and mid-pregnancy, while SO<sub>2</sub> exposure was significantly associated with GDM risk exclusively in early pregnancy. Sensitivity analyses stratified by urban maternity status and maternal age revealed the stability of the study's findings. These findings underscore the importance of reducing air pollution exposure during pregnancy and implementing targeted interventions for high-risk populations to prevent GDM development.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"13 2","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/toxics13020141","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Ambient air pollution has been associated with gestational diabetes mellitus (GDM); however, evidence regarding trimester-specific effects from China remains limited. This case-control study study analyzed data from pregnant women who delivered in Wuhan, China, between 2017 and 2022 (164 GDM cases and 731 controls), integrating geographic information, air quality measurements, and maternal characteristics. Using Inverse Distance Weighting interpolation and Generalized Linear Mixed Models (GLMM), we assessed associations between air pollutant exposure and GDM across different gestational periods. Results indicated that NO2 demonstrated the strongest association with GDM compared to other pollutants. Specifically, increased NO2 exposure was consistently associated with higher GDM risk throughout pregnancy. PM2.5 exposure showed significant associations during early and mid-pregnancy, while SO2 exposure was significantly associated with GDM risk exclusively in early pregnancy. Sensitivity analyses stratified by urban maternity status and maternal age revealed the stability of the study's findings. These findings underscore the importance of reducing air pollution exposure during pregnancy and implementing targeted interventions for high-risk populations to prevent GDM development.
ToxicsChemical Engineering-Chemical Health and Safety
CiteScore
4.50
自引率
10.90%
发文量
681
审稿时长
6 weeks
期刊介绍:
Toxics (ISSN 2305-6304) is an international, peer-reviewed, open access journal which provides an advanced forum for studies related to all aspects of toxic chemicals and materials. It publishes reviews, regular research papers, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in detail. There is, therefore, no restriction on the maximum length of the papers, although authors should write their papers in a clear and concise way. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of calculations and experimental procedure can be deposited as supplementary material, if it is not possible to publish them along with the text.