Xinqiang Lan, Mengqi Yang, Jiali Wang, Chunping Huang, Andong Wu, Leilei Cui, Yingqi Guo, Lin Zeng, Xiaolong Guo, Yun Zhang, Yang Xiang, Qiquan Wang
{"title":"Pore-Forming Protein LIN-24 Enhances Starvation Resilience in <i>Caenorhabditis elegans</i> by Modulating Lipid Metabolism and Mitochondrial Dynamics.","authors":"Xinqiang Lan, Mengqi Yang, Jiali Wang, Chunping Huang, Andong Wu, Leilei Cui, Yingqi Guo, Lin Zeng, Xiaolong Guo, Yun Zhang, Yang Xiang, Qiquan Wang","doi":"10.3390/toxins17020072","DOIUrl":null,"url":null,"abstract":"<p><p>The ability to survive starvation is a critical evolutionary adaptation, yet the molecular mechanisms underlying this capability remain incompletely understood. Pore-forming proteins (PFPs) are typically associated with immune defense, where they disturb the membranes of target cells. However, the role of PFPs in non-immune functions, particularly in metabolic and structural adaptations to starvation, is less explored. Here, we investigate the aerolysin-like PFP LIN-24 in <i>Caenorhabditis elegans</i> and uncover its novel function in enhancing starvation resistance. We found that LIN-24 expression is upregulated during starvation, leading to increased expression of the lipase-encoding gene <i>lipl-3</i>. This upregulation accelerates the mobilization and degradation of lipid stores, thereby sustaining energy levels. Additionally, LIN-24 overexpression significantly preserves muscle integrity, as evidenced by the maintenance of muscle structure compared to wild-type worms. Furthermore, we demonstrate that LIN-24 induces the formation of donut-shaped mitochondria, a structural change likely aimed at reducing ATP production to conserve energy during prolonged nutrient deprivation. This mitochondrial remodeling depends on genes involved in mitochondrial dynamics, including <i>mff-1</i>, <i>mff-2</i>, <i>drp-1</i>, and <i>clk-1</i>. Collectively, these findings expand our understanding of PFPs, demonstrating their multifaceted role in stress resistance beyond immune defense. LIN-24's involvement in regulating metabolism, preserving muscle structure, and remodeling mitochondria highlights its crucial role in the adaptive response to starvation, offering novel insights into the evolution of stress resistance mechanisms and potential therapeutic targets for conditions related to muscle preservation and metabolic regulation.</p>","PeriodicalId":23119,"journal":{"name":"Toxins","volume":"17 2","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11860826/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxins","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/toxins17020072","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The ability to survive starvation is a critical evolutionary adaptation, yet the molecular mechanisms underlying this capability remain incompletely understood. Pore-forming proteins (PFPs) are typically associated with immune defense, where they disturb the membranes of target cells. However, the role of PFPs in non-immune functions, particularly in metabolic and structural adaptations to starvation, is less explored. Here, we investigate the aerolysin-like PFP LIN-24 in Caenorhabditis elegans and uncover its novel function in enhancing starvation resistance. We found that LIN-24 expression is upregulated during starvation, leading to increased expression of the lipase-encoding gene lipl-3. This upregulation accelerates the mobilization and degradation of lipid stores, thereby sustaining energy levels. Additionally, LIN-24 overexpression significantly preserves muscle integrity, as evidenced by the maintenance of muscle structure compared to wild-type worms. Furthermore, we demonstrate that LIN-24 induces the formation of donut-shaped mitochondria, a structural change likely aimed at reducing ATP production to conserve energy during prolonged nutrient deprivation. This mitochondrial remodeling depends on genes involved in mitochondrial dynamics, including mff-1, mff-2, drp-1, and clk-1. Collectively, these findings expand our understanding of PFPs, demonstrating their multifaceted role in stress resistance beyond immune defense. LIN-24's involvement in regulating metabolism, preserving muscle structure, and remodeling mitochondria highlights its crucial role in the adaptive response to starvation, offering novel insights into the evolution of stress resistance mechanisms and potential therapeutic targets for conditions related to muscle preservation and metabolic regulation.
期刊介绍:
Toxins (ISSN 2072-6651) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to toxins and toxinology. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.