Bo-Yu Hsiao, Chun-Sheng Huang, Chang-Fu Wu, Kuo-Liong Chien, Hsiao-Yu Yang
{"title":"Residential Proximity Land Use Characteristics and Exhaled Volatile Organic Compounds' Impact on Pulmonary Function in Asthmatic Children.","authors":"Bo-Yu Hsiao, Chun-Sheng Huang, Chang-Fu Wu, Kuo-Liong Chien, Hsiao-Yu Yang","doi":"10.3390/jox15010027","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Urban air pollution adversely affects children's respiratory systems, but the impact of volatile organic compounds (VOCs) on children's pulmonary function remains unclear. This study aims to identify exhaled VOCs linked to land use characteristics and reduced pulmonary function in asthmatic children, as well as to explore environmental thresholds influencing VOC exposure levels.</p><p><strong>Methods: </strong>We enrolled 97 asthmatic children, aged 7 to 20, from Changhua County, Taiwan, and collected personal and residential data, collected exhaled VOC samples, and conducted pulmonary function tests. Land use characteristics were derived from the children's residential addresses. This study used two models to explore the relationships between land use, VOC levels, and pulmonary function.</p><p><strong>Results: </strong>Our results show that m/p-xylene, 1,3,5-trimethylbenzene, and 1,2,4-trimethylbenzene were key contributors to FEV<sub>1</sub>/FVC and significantly predicted FEV<sub>1</sub>/FVC < 90% (AUC = 0.66; 95% CI: 0.53 to 0.79). These VOCs were also linked to major road areas within a 300 m buffer around children's homes.</p><p><strong>Conclusions: </strong>This study fills a research gap on low-level outdoor VOC exposure and pediatric respiratory health, examining 1,3,5-trimethylbenzene, 1,2,4-trimethylbenzene, and m/p-xylene as potential biomarkers for impaired pulmonary function in children.</p>","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"15 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11856375/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Xenobiotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jox15010027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Urban air pollution adversely affects children's respiratory systems, but the impact of volatile organic compounds (VOCs) on children's pulmonary function remains unclear. This study aims to identify exhaled VOCs linked to land use characteristics and reduced pulmonary function in asthmatic children, as well as to explore environmental thresholds influencing VOC exposure levels.
Methods: We enrolled 97 asthmatic children, aged 7 to 20, from Changhua County, Taiwan, and collected personal and residential data, collected exhaled VOC samples, and conducted pulmonary function tests. Land use characteristics were derived from the children's residential addresses. This study used two models to explore the relationships between land use, VOC levels, and pulmonary function.
Results: Our results show that m/p-xylene, 1,3,5-trimethylbenzene, and 1,2,4-trimethylbenzene were key contributors to FEV1/FVC and significantly predicted FEV1/FVC < 90% (AUC = 0.66; 95% CI: 0.53 to 0.79). These VOCs were also linked to major road areas within a 300 m buffer around children's homes.
Conclusions: This study fills a research gap on low-level outdoor VOC exposure and pediatric respiratory health, examining 1,3,5-trimethylbenzene, 1,2,4-trimethylbenzene, and m/p-xylene as potential biomarkers for impaired pulmonary function in children.
期刊介绍:
The Journal of Xenobiotics publishes original studies concerning the beneficial (pharmacology) and detrimental effects (toxicology) of xenobiotics in all organisms. A xenobiotic (“stranger to life”) is defined as a chemical that is not usually found at significant concentrations or expected to reside for long periods in organisms. In addition to man-made chemicals, natural products could also be of interest if they have potent biological properties, special medicinal properties or that a given organism is at risk of exposure in the environment. Topics dealing with abiotic- and biotic-based transformations in various media (xenobiochemistry) and environmental toxicology are also of interest. Areas of interests include the identification of key physical and chemical properties of molecules that predict biological effects and persistence in the environment; the molecular mode of action of xenobiotics; biochemical and physiological interactions leading to change in organism health; pathophysiological interactions of natural and synthetic chemicals; development of biochemical indicators including new “-omics” approaches to identify biomarkers of exposure or effects for xenobiotics.