Thermal Stability and Matrix Binding of Citrinin in the Thermal Processing of Starch-Rich Foods.

IF 3.9 3区 医学 Q2 FOOD SCIENCE & TECHNOLOGY
Toxins Pub Date : 2025-02-13 DOI:10.3390/toxins17020086
Lea Brückner, Florian Neuendorff, Katharina Hadenfeldt, Matthias Behrens, Benedikt Cramer, Hans-Ulrich Humpf
{"title":"Thermal Stability and Matrix Binding of Citrinin in the Thermal Processing of Starch-Rich Foods.","authors":"Lea Brückner, Florian Neuendorff, Katharina Hadenfeldt, Matthias Behrens, Benedikt Cramer, Hans-Ulrich Humpf","doi":"10.3390/toxins17020086","DOIUrl":null,"url":null,"abstract":"<p><p>Citrinin (CIT) is a nephrotoxic mycotoxin commonly found in a broad range of foods, including cereals, spices, nuts, or <i>Monascus</i> fermentation products. Analyses have shown that CIT is present in processed foods in significantly lower concentrations than in unprocessed materials. Modified forms of CIT arising during food processing may provide an explanation for the discrepancy. This study deals with the thermal stability of CIT and the formation of reaction products of CIT with carbohydrates, followed by toxicological evaluations using cell culture models. HPLC-HRMS degradation curves of CIT heated in different matrix model systems were recorded, and the formation of decarboxycitrinin (DCIT), the main degradation product, was quantified. Additionally, chemical structures of reaction products of CIT with carbohydrates were tentatively identified using MS/MS spectra and stable isotope labelling. Subsequently, the degradation of CIT during biscuit baking was studied, and carbohydrate-bound forms of CIT were detected after enzymatic starch digestion. The formation of DCIT could explain the majority of CIT degradation, but, depending on the process, covalent binding to carbohydrates can also be highly relevant. Cytotoxicity of DCIT in IHKE-cells was found to be lower compared to CIT, while the toxicity as well as the intestinal metabolism of carbohydrate-bound CIT was not evaluated.</p>","PeriodicalId":23119,"journal":{"name":"Toxins","volume":"17 2","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11860567/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxins","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/toxins17020086","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Citrinin (CIT) is a nephrotoxic mycotoxin commonly found in a broad range of foods, including cereals, spices, nuts, or Monascus fermentation products. Analyses have shown that CIT is present in processed foods in significantly lower concentrations than in unprocessed materials. Modified forms of CIT arising during food processing may provide an explanation for the discrepancy. This study deals with the thermal stability of CIT and the formation of reaction products of CIT with carbohydrates, followed by toxicological evaluations using cell culture models. HPLC-HRMS degradation curves of CIT heated in different matrix model systems were recorded, and the formation of decarboxycitrinin (DCIT), the main degradation product, was quantified. Additionally, chemical structures of reaction products of CIT with carbohydrates were tentatively identified using MS/MS spectra and stable isotope labelling. Subsequently, the degradation of CIT during biscuit baking was studied, and carbohydrate-bound forms of CIT were detected after enzymatic starch digestion. The formation of DCIT could explain the majority of CIT degradation, but, depending on the process, covalent binding to carbohydrates can also be highly relevant. Cytotoxicity of DCIT in IHKE-cells was found to be lower compared to CIT, while the toxicity as well as the intestinal metabolism of carbohydrate-bound CIT was not evaluated.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Toxins
Toxins TOXICOLOGY-
CiteScore
7.50
自引率
16.70%
发文量
765
审稿时长
16.24 days
期刊介绍: Toxins (ISSN 2072-6651) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to toxins and toxinology. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信