The First K+-Channel Blocker Described from Tityus fasciolatus Venom: The Purification, Molecular Cloning, and Functional Characterization of α-KTx4.9 (Tf5).
Isolda de Sousa Monteiro, Israel Flor Silva de Araújo, Thalita Soares Camargos, Ernesto Ortiz, Adolfo Carlos Barros de Souza, Jonathan Dias Lima, Lourival D Possani, Elisabeth Ferroni Schwartz, Diogo Vieira Tibery
{"title":"The First K<sup>+</sup>-Channel Blocker Described from <i>Tityus fasciolatus</i> Venom: The Purification, Molecular Cloning, and Functional Characterization of α-KTx4.9 (Tf5).","authors":"Isolda de Sousa Monteiro, Israel Flor Silva de Araújo, Thalita Soares Camargos, Ernesto Ortiz, Adolfo Carlos Barros de Souza, Jonathan Dias Lima, Lourival D Possani, Elisabeth Ferroni Schwartz, Diogo Vieira Tibery","doi":"10.3390/toxins17020096","DOIUrl":null,"url":null,"abstract":"<p><p>Hundreds of toxins, particularly from scorpions of lesser medical significance, remain unknown, especially those from species endemic to specific ecosystems, such as <i>Tityus fasciolatus</i>. Their discovery could contribute to the development of new drugs for channelopathies and other diseases. Tf5 is a new peptide that has been identified from the venom of <i>Tityus fasciolatus</i>, a scorpion species endemic to the Brazilian Cerrado ecosystem. A full-length cDNA sequence of the Tf5 gene was obtained through a previously constructed transcriptomic library, where an ORF (Open Reading Frame) sequence with a length of 180 was found, including the 37 aa mature KTx domain, which has six Cys residues. Tf5 was purified from the crude venom, resulting in a peptide with a molecular mass of 3983.95 Da. Its K<sup>+</sup> channel blocker activity was evaluated on Kv1.1, Kv1.2, Kv1.3, and Kv1.4 subtypes. Of these Kv channels, the peptide demonstrated an ability to block Kv1.2 and Kv1.3 with an IC<sub>50</sub> of 15.53 nM and 116.41 nM, respectively. Additionally, Tf5 shares a high degree of sequence identity with toxins from the α-KTx4 subfamily, which led to it being classified as α-KTx4.9. This is the first Kv channel blocker described from the <i>T. fasciolatus</i> scorpion.</p>","PeriodicalId":23119,"journal":{"name":"Toxins","volume":"17 2","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11861696/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxins","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/toxins17020096","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hundreds of toxins, particularly from scorpions of lesser medical significance, remain unknown, especially those from species endemic to specific ecosystems, such as Tityus fasciolatus. Their discovery could contribute to the development of new drugs for channelopathies and other diseases. Tf5 is a new peptide that has been identified from the venom of Tityus fasciolatus, a scorpion species endemic to the Brazilian Cerrado ecosystem. A full-length cDNA sequence of the Tf5 gene was obtained through a previously constructed transcriptomic library, where an ORF (Open Reading Frame) sequence with a length of 180 was found, including the 37 aa mature KTx domain, which has six Cys residues. Tf5 was purified from the crude venom, resulting in a peptide with a molecular mass of 3983.95 Da. Its K+ channel blocker activity was evaluated on Kv1.1, Kv1.2, Kv1.3, and Kv1.4 subtypes. Of these Kv channels, the peptide demonstrated an ability to block Kv1.2 and Kv1.3 with an IC50 of 15.53 nM and 116.41 nM, respectively. Additionally, Tf5 shares a high degree of sequence identity with toxins from the α-KTx4 subfamily, which led to it being classified as α-KTx4.9. This is the first Kv channel blocker described from the T. fasciolatus scorpion.
期刊介绍:
Toxins (ISSN 2072-6651) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to toxins and toxinology. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.