Rui Li, Junwen Yu, Dongxin Ye, Shanghua Liu, Hongqi Zhang, Hao Lin, Juan Feng, Kejun Deng
{"title":"Conotoxins: Classification, Prediction, and Future Directions in Bioinformatics.","authors":"Rui Li, Junwen Yu, Dongxin Ye, Shanghua Liu, Hongqi Zhang, Hao Lin, Juan Feng, Kejun Deng","doi":"10.3390/toxins17020078","DOIUrl":null,"url":null,"abstract":"<p><p>Conotoxins, a diverse family of disulfide-rich peptides derived from the venom of <i>Conus</i> species, have gained prominence in biomedical research due to their highly specific interactions with ion channels, receptors, and neurotransmitter systems. Their pharmacological properties make them valuable molecular tools and promising candidates for therapeutic development. However, traditional conotoxin classification and functional characterization remain labor-intensive, necessitating the increasing adoption of computational approaches. In particular, machine learning (ML) techniques have facilitated advancements in sequence-based classification, functional prediction, and de novo peptide design. This review explores recent progress in applying ML and deep learning (DL) to conotoxin research, comparing key databases, feature extraction techniques, and classification models. Additionally, we discuss future research directions, emphasizing the integration of multimodal data and the refinement of predictive frameworks to enhance therapeutic discovery.</p>","PeriodicalId":23119,"journal":{"name":"Toxins","volume":"17 2","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11860864/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxins","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/toxins17020078","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Conotoxins, a diverse family of disulfide-rich peptides derived from the venom of Conus species, have gained prominence in biomedical research due to their highly specific interactions with ion channels, receptors, and neurotransmitter systems. Their pharmacological properties make them valuable molecular tools and promising candidates for therapeutic development. However, traditional conotoxin classification and functional characterization remain labor-intensive, necessitating the increasing adoption of computational approaches. In particular, machine learning (ML) techniques have facilitated advancements in sequence-based classification, functional prediction, and de novo peptide design. This review explores recent progress in applying ML and deep learning (DL) to conotoxin research, comparing key databases, feature extraction techniques, and classification models. Additionally, we discuss future research directions, emphasizing the integration of multimodal data and the refinement of predictive frameworks to enhance therapeutic discovery.
期刊介绍:
Toxins (ISSN 2072-6651) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to toxins and toxinology. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.