The Small Non-Coding RNA Profile of Human and Mouse Sperm.

IF 3.6 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yoon Sing Yap, Pasquale Patrizio, Luisa Cimmino, Konstantinos Sdrimas, Aristeidis G Telonis
{"title":"The Small Non-Coding RNA Profile of Human and Mouse Sperm.","authors":"Yoon Sing Yap, Pasquale Patrizio, Luisa Cimmino, Konstantinos Sdrimas, Aristeidis G Telonis","doi":"10.3390/ncrna11010015","DOIUrl":null,"url":null,"abstract":"<p><p>Small non-coding RNAs constitute a dynamic epigenetic layer in mature spermatozoa that can exert transgenerational regulatory functions. Here, we review recent advances in the field of small RNAs in spermatozoa, how their profiles change in response to lifestyle or environmental factors, and their impact on offsprings' physiology. The profile of these RNAs changes dramatically during spermatozoa maturation. The majority of intracellular small RNAs during early spermatogenesis are miRNAs and piRNAs, but, in mature spermatozoa, tRNA- and rRNA-derived fragments (tRFs and rRFs, respectively) are the predominant forms, primarily delivered from the epididymis via extracellular vesicles. Diet, exercise, and environmental exposures have a direct effect on small RNA levels in spermatozoa, and this differential abundance can reprogram the development of the embryo. Offsprings of fathers with different lifestyles can have different phenotypes, including altered metabolism or behavior. Therefore, small RNAs in spermatozoa are emerging as an important epigenetic layer in development and transgenerational inheritance.</p>","PeriodicalId":19271,"journal":{"name":"Non-Coding RNA","volume":"11 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11858474/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Non-Coding RNA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ncrna11010015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Small non-coding RNAs constitute a dynamic epigenetic layer in mature spermatozoa that can exert transgenerational regulatory functions. Here, we review recent advances in the field of small RNAs in spermatozoa, how their profiles change in response to lifestyle or environmental factors, and their impact on offsprings' physiology. The profile of these RNAs changes dramatically during spermatozoa maturation. The majority of intracellular small RNAs during early spermatogenesis are miRNAs and piRNAs, but, in mature spermatozoa, tRNA- and rRNA-derived fragments (tRFs and rRFs, respectively) are the predominant forms, primarily delivered from the epididymis via extracellular vesicles. Diet, exercise, and environmental exposures have a direct effect on small RNA levels in spermatozoa, and this differential abundance can reprogram the development of the embryo. Offsprings of fathers with different lifestyles can have different phenotypes, including altered metabolism or behavior. Therefore, small RNAs in spermatozoa are emerging as an important epigenetic layer in development and transgenerational inheritance.

人类和小鼠精子的非编码小RNA谱。
小的非编码rna在成熟精子中构成一个动态的表观遗传层,可以发挥跨代调节功能。在这里,我们回顾了精子中小rna领域的最新进展,它们的谱如何随着生活方式或环境因素而变化,以及它们对后代生理的影响。这些rna的谱在精子成熟过程中发生了巨大的变化。在早期精子发生过程中,细胞内的小rna大多数是mirna和pirna,但在成熟精子中,tRNA和rrna衍生的片段(分别为tRFs和rfs)是主要形式,主要通过细胞外囊泡从附睾传递。饮食、运动和环境暴露对精子中的小RNA水平有直接影响,这种差异丰度可以重新编程胚胎的发育。不同生活方式的父亲的后代可能有不同的表型,包括改变的新陈代谢或行为。因此,精子中的小rna在发育和跨代遗传中成为重要的表观遗传层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Non-Coding RNA
Non-Coding RNA Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
6.70
自引率
4.70%
发文量
74
审稿时长
10 weeks
期刊介绍: Functional studies dealing with identification, structure-function relationships or biological activity of: small regulatory RNAs (miRNAs, siRNAs and piRNAs) associated with the RNA interference pathway small nuclear RNAs, small nucleolar and tRNAs derived small RNAs other types of small RNAs, such as those associated with splice junctions and transcription start sites long non-coding RNAs, including antisense RNAs, long ''intergenic'' RNAs, intronic RNAs and ''enhancer'' RNAs other classes of RNAs such as vault RNAs, scaRNAs, circular RNAs, 7SL RNAs, telomeric and centromeric RNAs regulatory functions of mRNAs and UTR-derived RNAs catalytic and allosteric (riboswitch) RNAs viral, transposon and repeat-derived RNAs bacterial regulatory RNAs, including CRISPR RNAS Analysis of RNA processing, RNA binding proteins, RNA signaling and RNA interaction pathways: DICER AGO, PIWI and PIWI-like proteins other classes of RNA binding and RNA transport proteins RNA interactions with chromatin-modifying complexes RNA interactions with DNA and other RNAs the role of RNA in the formation and function of specialized subnuclear organelles and other aspects of cell biology intercellular and intergenerational RNA signaling RNA processing structure-function relationships in RNA complexes RNA analyses, informatics, tools and technologies: transcriptomic analyses and technologies development of tools and technologies for RNA biology and therapeutics Translational studies involving long and short non-coding RNAs: identification of biomarkers development of new therapies involving microRNAs and other ncRNAs clinical studies involving microRNAs and other ncRNAs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信